This study investigated a new approach to achieving high energy density supercapacitors (SCs) by using high surface area self-activated carbon from waste coffee grounds (WCGs) and modifying 3D printed electrodes' porous structure by varying infill density. The derived activated carbons' surface area, pore size, and pore volume were controlled by thermally treating the WCGs at different temperatures (1000˚C, 1100˚C, and 1200˚C) and post-treating with HCL to remove water-soluble ashes and contaminants that block activated carbon pores. Surface area characterization revealed that the carbon activated at 1000˚C had the highest surface of 1173.48 m2 g-1, and with the addition of HCL, the surface area increased to 1209.35 m2 g-1. This activated carbon was used for fabricating the electrodes based on the surface area and having both micropores and macropores, which are beneficial for charge storage. Direct ink writing (DIW) method was utilized for 3D printing SC electrodes and changing the electrode structure by increasing the infill densities at 30%, 50%, and 100%. Upon increasing the infill densities, the electrodes' mass increased linearly, porosity decreased, and the total surface area increased for the 30% and 50% infill electrodes but decreased for the 100% infill electrode. Cyclic voltammetry (CV) test on the assembled SC showed the highest specific capacitance and energy density of 5.81 F g-1 and 806.93 mWh kg-1 at 10 mV s-1, respectively, for the electrode printed at 50% infill density.
Identifer | oai:union.ndltd.org:unt.edu/info:ark/67531/metadc2179286 |
Date | 07 1900 |
Creators | Disi, Onome Aghogho |
Contributors | Choi, Wonbong, Jiang, Yijie, Shi, Sheldon |
Publisher | University of North Texas |
Source Sets | University of North Texas |
Language | English |
Detected Language | English |
Type | Thesis or Dissertation |
Format | Text |
Rights | Public, Disi, Onome Aghogho, Copyright, Copyright is held by the author, unless otherwise noted. All rights Reserved. |
Page generated in 0.0022 seconds