La biogenèse des ribosomes eucaryotes est un processus complexe qui implique la production et l'assemblage de 4 ARNr et 80 protéines. La production des deux sous-unités du ribosome, 40S et 60S, débute dans le nucléole par la synthèse d'un long précurseur commun contenant les séquences des ARNr matures et se termine dans le cytoplasme où ont lieu les dernières étapes d'assemblage des protéines ribosomiques et de clivage des ARNr. La production de ribosomes nécessite la participation de plus de 200 co-facteurs, qui catalysent les clivages et modifications des ARNr, coordonnent leur repliement et leur association aux protéines ribosomiques, et assurent des étapes de contrôle-qualité. Ces protéines sont associées aux particules en cours de maturation et absentes des sous-unités matures. Cette voie de synthèse, globalement conservée chez les eucaryotes, a été principalement étudiée chez la levure. Cependant, des études récentes ont montré des différences importantes de ce processus entre levure et mammifères. Un des verrous importants pour comprendre la fonction des co-facteurs, est l'absence de données sur la structure des précurseurs des sous-unités ribosomiques. J'ai donc entrepris une étude structurale de l'assemblage cytoplasmique de la petite sous-unité ribosomique chez l'homme par cryo-microscopie électronique à transmission. Le but de ma thèse était de déterminer la structure 3D des précurseurs de la petite sous-unité ribosomique purifiés à différentes étape de leur maturation. Ce travail a été conduit en collaboration avec l'équipe du Pr. Ulrike Kutay (ETH Zurich) pour la purification des particules pré-40S à partir de cellules humaines. La première structure 3D de particule pré-40S intermédiaire purifiée en étiquetant le co-facteur LTV1 a été déterminée à 19Å de résolution. Dans un deuxième temps, la structure 3D de la particule pré-40S tardive purifiée à via RIO1(KD) a aussi été déterminée à 15Å de résolution. Ces données nous ont permis de proposer un modèle de localisation des co-facteurs sur les précurseurs de la petite sous-unité ribosomique et de montrer une nouvelle différence dans la formation de la petite sous-unité chez l'Homme comparé à la levure, du fait de la présence de la protéine RACK1 sur les particules pré-40S humaines. La comparaison des structures des précurseurs de la petite sous-unité obtenues a permis de mettre en lumière l'existence de remodelages structuraux de la particule pré-40S au cours de sa maturation. Ce travail met en lumière les premières structures 3D de particules pré-40S humaines et pose les fondements méthodologiques d'explorations futures de la dynamique structurale des particules pré-ribosomiques. / Ribosome biogenesis is a complex process that requires the production and the correct assembly of the 4 rRNAs with 80 ribosomal proteins. In Human, the production of the two subunits, 40S and 60S, is initiated by the transcription of a pre-ribosomal rRNA precursor to the mature 18S, 5.8S, and 28S rRNAs by the RNA polymerase I, which is chemically modified and trimmed by endo- and exoribonuclease, in order to form the mature rRNAs. The nascent pre rRNA associated with ribosomal proteins, small ribonucleoprotein particles (snoRNP) and so called co-factors leading to the assembly of an initial 90S particle. This particle is then split into pre-40S and pre-60S pre-ribosomal particles that fallow independent maturation to form the mature subunit into the cytoplasm. Production of eukaryotic ribosomes implies the transient intervention of more than 200 associated proteins and ribonucleoprotein particles, that are absent from the mature subunits. Synthesis of ribosome, globally conserved in eukaryotes, has been principally studied in yeast. However, recent studies reveal that this process is more complex in human compared in yeast. An important bottleneck in this domain is the lack of structural data concerning the formation of intermediate ribosomal subunits to understand the function of assembly factors. Determination of the structural remodeling of pre-ribosomal particles is crucial to understand the molecular mechanism of this complex process. So I have undertaken a structural study on the assembly of the small ribosomal subunit using cryo-electron microscopy and image analysis. The goal of my thesis is to determine the 3D structures of human pre-40S particles at different maturation stages to see the structural remodeling that occurs during the biogenesis of the small ribosomal subunit. We are collaborating with the group of Pr Ulrike Kutay at ETH Zurich, who purify human pre-40S particles. The 3D structures of human pre-40S particles purified at an intermediate and late maturation stages, has been determined with a resolution of 19 and 15Å respectively. Supplementary densities, compared to the mature subunit, indicate the presence of assembly factors and show the unexpected presence of the RACK1 protein in the precursor of the human small ribosomal subunit in the cytoplasm. The comparison of the 3D structures of human pre-40S particle allows showing the structural remodeling that occur during the maturation of the small ribosomal subunit. This work provides the first 3D structure of human pre-40S particles and laid the methodological foundations for future exploration of the structural dynamics of pre-ribosomal particles.
Identifer | oai:union.ndltd.org:theses.fr/2015TOU30336 |
Date | 20 November 2015 |
Creators | Larburu, Natacha |
Contributors | Toulouse 3, Plisson, Célia, Gleizes, Pierre-Emmanuel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0022 seconds