Return to search

The Design, Fabrication, and Characterization of Waffle-substrate-based n-channel IGBTs in 4H-SiC

<div>Power semiconductor devices play an important role in many areas, including household</div><div>appliances, electric vehicles, high speed trains, electric power stations, and renewable energy</div><div>conversion. In the modern era, silicon based devices have dominated the semiconductor</div><div>market, including power electronics, because of their low cost and high performance. The</div><div>applications of devices rated 600 V - 6.5 kV are still dominated by silicon devices, but they</div><div>are nearly reaching fundamental material limits. New wide band gap materials such as silicon</div><div>carbide (SiC) offer significant performance improvements due to superior material properties</div><div>for such applications in and beyond this voltage range. 4H-SiC is a strong candidate</div><div>among other wide band gap materials because of its high critical electric field, high thermal</div><div>conductivity, compatibility with silicon processing techniques, and the availability of high</div><div>quality conductive substrates.</div><div>Vertical DMOSFETs and insulated gate bipolar transistors (IGBT) are key devices for</div><div>high voltage applications. High blocking voltages require thick drift regions with very light</div><div>doping, leading to specific on-resistance (R<sub>ON,SP</sub> ) that increases with the square of blocking</div><div>voltage (V<sub>BR</sub>). In theory, superjunction drift regions could provide a solution because of a</div><div>linear dependence of R<sub>ON,SP</sub> on V<sub>BR</sub> when charge balance between the pillars is achieved</div><div>through extremely tight process control. In this thesis, we have concluded that superjunction</div><div>devices inevitably have at least some level of charge imbalance which leads to a quadratic</div><div>relationship between V<sub>BR</sub> and R<sub>ON,SP</sub> . We then proposed an optimization methodology to</div><div>achieve improved performance in the presence of this inevitable imbalance.</div><div>On the other hand, an IGBT combines the benefits of a conductivity modulated drift</div><div>region for significantly reduced specific on-resistance with the voltage controlled input of a</div><div>MOSFET. Silicon carbide n-channel IGBTs would have lower conduction losses than equivalent</div><div>DMOSFETs beyond 6.5 kV, but traditionally have not been feasible below 15 kV. This</div><div>is due to the fact that the n+ substrate must be removed to access the p+ collector of the</div><div>IGBT, and devices below 15 kV have drift layers too thin to be mechanically self-supporting.</div><div>In this thesis, we have demonstrated the world’s first functional 10 kV class n-IGBT with</div><div>a waffle substrate through simulation, process development, fabrication and characterization.</div><div><div>The waffle substrate would provide the required mechanical support for this class of devices.</div><div>The fabricated IGBT has exhibited a differential R<sub>ON,SP</sub> of 160 mohm</div><div>.cm<sup>2</sup>, less than half of</div><div>what would be expected without conductivity modulation. An extensive fabrication process</div><div>development for integrating a waffle substrate into an active IGBT structure is described</div><div>in this thesis. This process enables an entirely new class of moderate voltage SiC IGBTs,</div><div>opening up new applications for SiC power devices.</div></div>

  1. 10.25394/pgs.15052824.v1
Identiferoai:union.ndltd.org:purdue.edu/oai:figshare.com:article/15052824
Date27 July 2021
CreatorsMd monzurul Alam (11184600)
Source SetsPurdue University
Detected LanguageEnglish
TypeText, Thesis
RightsCC BY-NC-SA 4.0
Relationhttps://figshare.com/articles/thesis/The_Design_Fabrication_and_Characterization_of_Waffle-substrate-based_n-channel_IGBTs_in_4H-SiC/15052824

Page generated in 0.0115 seconds