Les suspensions minérales de particules fines sont connues pour leur comportement non-Newtonien pendant l'écoulement. Les interactions particule-particule dans de tels systèmes (c’est-à-dire, suspensions minérales) ne sont pas limitées au contact physique, e.g. collision et frottement. La capacité des minéraux de développer une charge dans l'environnement aqueux justifie des comportements différents des systèmes similaires de première vue. C’est à dire qu’étant caractérisées avec la même fraction volumétrique, composition chimique et granulométrie des solides et densité de dispersant, deux suspensions peuvent montrer un comportement rhéologique différent en raison de la chimie de la solution. Dans ce cas, la composition ionique du dispersant définira la charge des particules, et donc le degré d'agglomération/dispersion dans la suspension. Les argiles phyllosilicates sont connues pour être particulièrement problématiques dans les processus de valorisation des minéraux. L’origine de ces minéraux phyllosilicates implique leur inhomogénéité chimique spatiale, ce qui signifie que le bord et la face de la particule montrent des propriétés chimiques et physiques différentes. La présence de tels minéraux dans les dispositifs d'agitation (réservoirs d'agitation, cellules de flottation) est souvent caractérisée par la coexistence de volumes de suspension stagnants et agités, ce qui a un impact négatif sur l'efficacité de l'agitation. Dans ce travail, les suspensions aqueuses diluées de Na-bentonite ont été examinées par vélocimétrie par imagerie par résonance magnétique afin d'étudier l'influence du pH et du type d'électrolyte monovalent sur leur comportement rhéologique local. Les résultats ont montré que les suspensions contenant 0,1% de solide en volume peuvent présenter une bande de cisaillement, une localisation de cisaillement ou aucun phénomène local en fonction de la chimie du milieu de suspension. Il a été suggéré que l’existence d’une «master curve» (ou courbe d’écoulement globale) pour les suspensions diluées dépendait de l’organisation des particules de bentonite dans la suspension, cette organisation est influencée par la chimie de solution et l’historique des contraintes précédentes. Dans l'étape suivante, une seconde et troisieme phases minérales (hématite et quartz) ont été ajoutées dans la matrice de bentonite. L’intérêt dans tels systèmes est lié au comportement sous écoulement des matrices formées avec des types de contacts différents entre particules. Les types de contacts établis dans les suspensions avec une chimie différente du milieu ont été discutés, ainsi que leurs propriétés d’écoulement / Fine particle mineral slurries are known to exhibit non-Newtonian behavior under the load. The particle-particle interactions in such suspensions go beyond physical contact due to the collision and friction. An ability of minerals to gain the charge in the aqueous environment justifies different behaviors of the similar systems. Being characterized with the same volumetric fraction, chemistry and particle size distribution of solids, and specific gravity of dispersing media, two suspensions can possess different rheological behavior due to the chemistry of the solution. In this case, the ionic composition of the media defines particle charging, and thus the degree of agglomeration/dispersion in the suspension. Phyllosilicate clays are known to be particularly problematic in the mineral beneficiation processes. Their nature leads spatial chemical inhomogeneity, meaning that the particle edge and face possess different chemical and physical properties. The presence of such minerals in the stirring devices (stirring tanks, flotation cells) is often characterized with coexistence of stagnant and agitated volumes of slurry, which negatively impacts the efficiency of stirring. In this work, the dilute aqueous Na-bentonite suspensions were examined via magnetic resonance imaging velocimetry to investigate the influence of pH and type of monovalent electrolyte on their local rheological behavior. The results indicated that suspensions with 0.1 vol.% solid can exhibit shear banding, shear localization or no local phenomenon as a function of chemistry of the suspending media. It was suggested that the existence of master curve (or global flow curve) for dilute suspensions was dependent on the bentonite particle organization in the suspension, which was influenced by the chemistry of the environment and the previous flow history. In the next step, second mineral phase (hematite or quartz) was added to the bentonite matrix. The interest in examination of such systems is related to the flow behavior of matrix formed with different kinds of inter-particle contacts. For example, at pH 4 the resulting electrostatic interaction between positively charged bentonite edge and negatively charged quartz is attractive, whereas at the same pH it is repulsive with the positively charged hematite. These electrostatic interactions result in different organization of matrix particles around another mineral phase. In the system with solely repulsive interactions between all sites of all mineral phases (e.g., quartz and bentonite, pH 10) the deviation from Newtonian behavior is justified by the shear-induced particle rearrangements, collision and friction. The difference in the arrangement of bentonite particle aggregates around the hematite or quartz particles was observed using SEM. As a next step the third mineral phase was added. The types of contacts established in the suspensions with different chemistry of the media were discussed along with their flow propperties
Identifer | oai:union.ndltd.org:theses.fr/2018LORR0272 |
Date | 05 December 2018 |
Creators | Chernoburova, Olga |
Contributors | Université de Lorraine, Montel, Jean-Marc, Otsuki, Akira |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0023 seconds