Return to search

Design and synthesis of aquaporin water channel inhibitors

Aquaporins (AQPs) are membrane channel proteins which facilitate rapid water transport across cell membranes. It is believed these channels are involved in many physiological processes including renal water conservation, neuro-homeostasis, digestion, regulation of body temperature and reproduction. At least 11 mammalian AQPs (AQP0 – AQP10) have been identified to date, making them potential therapeutic targets for drug intervention. Initial studies have shown that Hg<sup>2+</sup> irreversibly blocks water transport in AQP-1 by the formation of a mercaptide covalent bond with cysteine residue 189 deep within the pore. AQP-1 function can also be modified by tetraethylammonium chloride (TEA) (100 μM), which reversibly blocks water permeability in <i>Xenopus laevis</i> oocytes injected with AQP-12 and AQP-2 by 44 ± 11% and 49 ± 18% respectively. However, a specific reversible AQP inhibitor has so far not been reported. A 2.2 Å high resolution crystal structure of <i>Escherichia coli</i> glycerol facilitator (G1pF) was employed as a model for water transport through AQP-1. A number of compound libraries, based on the lead compounds of glycerol and TEA have been synthesised using a range of automated techniques. Several of these compounds have been screened as putative aquaplugs on <i>Xenopus laevis</i> oocytes injected with AQP-1, 2, 3, 4 and 5. Initial results suggest that it is possible to selectively block water throughput I AQP-1, using dimethyl ethyl hexadecanyl ammonium bromide (100 μM), by 80 ± 7% and AQP-2, using dimethyl ethyl decanyl ammonium bromide (100 μM), by 58 ± 16%. To our knowledge these are the first known selective blockers of AQP-1 and 2. These results have provided the basis to develop more focused lead compound optimisation which in turn should establish further qualitative structure-activity-relationship data to aid in our understanding of the mechanisms associated with water transport throughout the AQP family.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:642073
Date January 2005
CreatorsBrown, Fraser Kendall
PublisherUniversity of Edinburgh
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://hdl.handle.net/1842/12913

Page generated in 0.0014 seconds