<p>The aim of this work is to characterize the beam of the 60Co therapy unit “Siemens Gammatron 1”, used at the Swedish Radiation Protection Authority (SSI) to calibrate therapy level ionization chambers. SSI wants to know the spectra in the laboratory’s reference points and a verified, virtual model of the 60Co unit to be able to compare current and future experiments to Monte Carlo simulations.</p><p>EGSnrc is a code for performing Monte Carlo simulations. By using BEAMnrc, which is an additional package that simplifies the building process of a geometry in the EGS-code, the whole Gammatron at SSI was defined virtually. In this work virtual models for two experimental setups were built: the Gammatron irradiating in air to simulate the air-kerma calibration geometry and the Gammatron irradiating a water phantom similar to that used for the absorbed dose to water calibrations.</p><p>The simulations are divided into two different substeps: one for the fixed part of the Gammatron and one for the variable part to be able to study different entities and to shorten simulation times.</p><p>The virtual geometries are verified by comparing Monte Carlo results with measurements. When it was verified that the virtual geometries were to be trusted, they were used to generate the Gammatron photon spectra in air and water with different field sizes and at different depths. The contributions to the photon spectra from different regions in the Gammatron were also collected. This is something that is easy to achieve with Monte Carlo calculations, but difficult to obtain with ordinary detectors in real life measurements.</p><p>The results from this work give SSI knowledge of the photon spectra in their reference points for calibrations in air and in water phantom. The first step of the virtual model (fixed part of Gammatron) can be used for future experimental setups at SSI.</p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:su-7212 |
Date | January 2006 |
Creators | De Luelmo, Sandro Carlos |
Publisher | Stockholm University, Medical Radiation Physics (together with KI) |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, text |
Page generated in 0.0022 seconds