Return to search

Integrating supply chain simulation, component geometry, and unit cost estimation

This thesis shows how utilising dynamic simulation to estimate unit costs and manufacturing resources, can aid design decisions. A framework specification is introduced that integrates Computer Aided Design (CAD), Discrete Event Simulation (DES) and Activity Based Cost (ABC) methodology. The framework aids a design team in understanding the consequences of design decisions in terms of unit cost and manufacturing resources, by returning aggregated unit cost and manufacturing based data, directly to the design team, within the design environment. Dynamic Resource Estimation System (DRES) has been developed to implement the framework and conduct two case studies based on representative aerospace components. The purpose of the first case study is to determine the benefits and applications of integrating a dynamic supply chain simulation and unit cost estimation. The second case study is used to show that the framework is capable of handling significantly different components and to highlight the effort required to implement a new component within the framework. This thesis concludes that there are three primary benefits provided by the framework, which are: firstly, the framework can accurately predict required resources to fulfil a supply chain for a specific production rate, which can be utilised by manufacturing engineers to aid production planning; secondly, the framework increases refinement of a component unit cost estimate, by including manufacturing time and dynamically determined resource requirements into an ABC cost model; and thirdly, the framework has the ability to compare multiple supply chain options and different supply chain types at the same time from component geometry.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:568895
Date January 2012
CreatorsJinks, Stuart
ContributorsScanlan, James
PublisherUniversity of Southampton
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttps://eprints.soton.ac.uk/348807/

Page generated in 0.0059 seconds