Return to search

Studies in electrode kinetics

This thesis is concerned with the study of electrode kinetics, which we shall examine via comparison between theory with experiment. As such the first two chapters outline the basic principles of electrochemical experiments and their simulation. First, we examine the properties of voltammetry at porous electrodes by means of both simulations and experiments. We then introduce the symmetric Marcus-Hush (SMH) model of electrode kinetics as an alternative to the empirical Butler-Volmer model. First, we examine different methods for modeling the voltammetry of kinetically inhomogeneous electroactive monolayers. Next, we perform a critical evaluation of the SMH model for solution-phase systems through extensive comparison to experiments under diffusion-only and convective mass transport conditions using both cyclic and square wave voltammetry. The model is compared with the Butler-Volmer model throughout and is ultimately found to be poorly suited to the parameterisation of electrode kinetics, despite its foundations in the microscopic Marcus theory. We then introduce the asymmetric Marcus-Hush model, which removes the assumption that the Gibbs energy curves for reactant and product have the same curvature. This modification results in an additional parameter which quantifies the asymmetry of the system. A similar evaluation of this model is then undertaken for both surface-bound and solution phase systems and the asymmetric model is found to be a great deal more successful than its symmetric predecessor. Finally we outline a novel technique for extracting kinetic information directly from experimental cyclic voltammetry. The method is simple to implement and is general to all electrode geometries with one-dimensional symmetry.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:581293
Date January 2013
CreatorsHenstridge, Martin Carl
ContributorsCompton, Richard G.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:562136fd-3a23-464e-8829-c1b37052a29a

Page generated in 0.001 seconds