• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 10
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modelling potentials, concentrations and current densities in three-dimensional electrodes for recovery of lead (II) ions from aqueous alkaline solutions by simultaneous electrodeposition of lead and lead dioxide

Cheng, Chun-yee January 2006 (has links)
No description available.
2

Bio-functionalised nanostructured metal oxide electrodes

Astuti, Yeni January 2006 (has links)
No description available.
3

The conducting structure and voltammetric behaviour of graphite-epoxy resin composite electrodes for on-line chlorine sensing

Willows, Alison January 2005 (has links)
No description available.
4

Monitoring the growth of pi-conjugated aromatic molecular wires on gold films

Pinna, Rosella January 2007 (has links)
No description available.
5

New directions in screen printing and related fabrication processess

Choudhry, Nadeem Azram January 2013 (has links)
This thesis reports the development of screen printed electrodes and associated fabrication processes in order to develop and understand new electrochemical based sensors. There are three main sections to this thesis. In the first part, an overview of sensors, in particular electrochemical sensors, that are commercially available and their current problems and limitations with conventional electrodes and electrode materials is discussed. Second, an introduction into screen printing and their advantages are given. The full process by which these next generation electrodes are manufactured is thoroughly described followed by examples of screen printed-electrodes and their powerful application as well as their low detection limits which compare well to existing literature on the market. The first example of a copper (11) oxide screen-printed electrode is reported, which is characterised with microscopy and its efficiency for the electrochemical sensing of glucose, maltose, sucrose and fructose is explored. It is shown that the non-enzymatic electrochemical sensing of glucose with cyclic voltammetry and amperometry is possible with low micro-molar up to milli-molar glucose readily detectable, which compares competitively with nano-catalyst modified electrodes. An additional benefit of this approach is that metal oxides with known oxidation states can be incorporated into the screen- printed electrodes allowing one to identify exactly the origin of the observed electro- catalytic response which is difficult when utilising metal oxide modified electrodes formed via electro-deposition techniques which result in a mixture of metal oxides/oxidation states. These next generation screen printed electrochemical sensing platforms provide a simplification offering a novel fabrication route for the mass production of electro-catalytic sensors for Analytical and Forensic applications. Other examples such as, bespoke screen printed electrodes which can be used as a template to produce randomly dispersed electro- catalytic micro-domains for analytical sensing purposes, are also shown to further demonstrate the applications and utility of screen printed electrodes. The final section focuses on electrode design. It is demonstrated that the electron transfer properties of disposable screen-printed electrodes can be readily tailored via the introduction of a polymeric formulation into the ink used in their fabrication. This approach allows the role of the binder on the underpinning electrochemical properties to be explored and quantified for the first time, allowing the electrochemical reactivity of the screen- printed electrodes to be tailored from that of edge plane-like to basal plane-like reactivity of highly ordered pyrolytic graphite. Building on this fundamental study of the origin of electron transfer at these novel electrodes, the first example of "Cosmetic Electrochemistry" is demonstrated where a commercially available cosmetic product, a deodorant, can be used to confer microelectrode behaviour on a macroelectrode. Proof-of-concept is shown that a graphite screen-printed electrode can be sprayed with an off-the-shelf cosmetic product and within seconds is ready to use. The polymer contained within the cosmetic product partially blocks the graphite screen-printed electrode surface leaving the underlying graphite electrode exposed in the form of graphite micron-sized sites which are randomly distributed across the electrode surface. The creation of microdomain sites enhance mass transport of the target analyte and it is shown that the electroanalytical performance of the cosmetically modified electrode, via the cathodic stripping of lead, could achieve a similar performance to current state-of-the-art methodologies. Further examples are also reported with the introduction of plaster-trodes where a commercially available plaster is electrolytically modified with electrocatalytic material and is used to detect various alcohols.
6

Electrochemical properties of small diamond particles and graphene composite assemblies

Hongthani, Wiphada January 2011 (has links)
Diamond electrodes have shown outstanding properties such as high stability, high charge transport and surface conductivity for H-terminated surfaces. These properties have been obtained from a number of electrochemical studies on diamond films. Diamond-particle electrodes could have all those properties with the advantage of a high surface area, which would make good materials for electrocatalysis applications. Chemically reduced graphene oxide (CR-GO) has shown promising properties to be used as electrode materials. However, their electrochemistry is still not fully understood. In this study, electrochemical properties of HPHT diamond-particle and graphene-DNA (G-DNA) composite assemblies are investigated. The studies of diamond particles involve electrostatic self-assembly, electrochemistry, and lateral and vertical charge transport. All properties were probed as a function of particle surface termination. Diamond particles (DP) were treated in a hot acid bath and a H2 plasma reactor to obtain 0- (ODP) and H-terminated (HDP) particles, respectively. In aqueous media, all diamond samples showed negative surface charge at pH ≥7. The negative surface charge allowed the electrostatic adsorption of the particles on ITO electrodes. The diamond assemblies were used as working electrodes for electrochemical studies. sp2 surface states are responsible for the electrochemical response of DP. The response of HDP is associated with the accumulation of surface holes due to electrochemical surface doping. Electrochemical analysis provided an estimated sur- face hole density, as well as the valence band edge of HDP. Vertical charge-transport of diamond particles is obtained from charge-transfer mediation across a blocking layer. Lateral conductivity is obtained from an electrochemical field-effect transistor. HDP shows higher lateral and vertical charge transport than DP and ODP. The high charge transport of HDP is linked to the accumulation of surface holes due to the surface doping of hydrogenated diamonds. The studies of G-DNA involve characterisation, electrochemistry and charge-transfer mediation across a blocking layer. Comparisons with graphene oxide (GO) were made in all cases. Spectroscopic characterisation demonstrates that G-DNA is partially re- duced GO and it contains a high defect density. The electrochemical behaviour of G-DNA assemblies is similar to other conventional sp2 carbon electrodes. The enhancement of electron-transfer mediation by G-DNA is due to the high density of states near the Fermi level. High surface-area electrodes of discrete materials can be prepared by electrostatic self-assembly. Electrochemical studies showed that the electrochemical behaviour is surface-termination dependent for diamond particles. Partially hydrogenated particles of diamond can have high charge transport due to the surface doping. The high defect density G-DNA shows higher electrochemical reactivity than GO.
7

Electrical and spectral characterisation of inkjet printed poly (3,4-ethylenedioxythiopene):poly(4-styrenesulphonate)

Morris, David Jonathan January 2004 (has links)
This thesis describes a pioneering investigation in which time resolved scanning Kelvin probe microscopy (SKPM) and Raman spectroscopy were combined to identify processes occurring at the interface of inkjet printed poly(3,4- ethylenedioxythiophene): poly(4- styrenesulphonate) (PEDOT: PSS) and aluminium and indium tin oxide (ITO) electrodes. In order to undertake these measurements an experimental inkjet printing system was designed and constructed capable of robustly inkjetting polymer solutions with micron resolution suitable for inkjetting typical polymer device structures. The main findings of the SKPM work showed; (i) that there was good charge transfer between ITO and polymer as indicated by the lack of a significant potential drop at the interface, however this was not the case with the aluminium electrodes where large potential drops were seen at the interface and (ii) that ionic impurities in the polymer migrated under an applied electric field to the electrodes where they were not discharged, resulting in a collapse of the potential across the bulk of the polymer. These mechanisms were likely to be those responsible for the I oc t-" behaviour seen in potential step response measurements. This behaviour was confirmed by the Raman spectroscopy which showed changes in the spectra in the range 1200 to 1600cm-1 related to the structure of the conjugated polymer backbone and its doping levels. The observed charge transfer and ionic migration results have significant implications for polymer devices including the efficiency and degradation of PLEDs and FETs and the operating mechanism of polymer memory devices.
8

Studies in electrode kinetics

Henstridge, Martin Carl January 2013 (has links)
This thesis is concerned with the study of electrode kinetics, which we shall examine via comparison between theory with experiment. As such the first two chapters outline the basic principles of electrochemical experiments and their simulation. First, we examine the properties of voltammetry at porous electrodes by means of both simulations and experiments. We then introduce the symmetric Marcus-Hush (SMH) model of electrode kinetics as an alternative to the empirical Butler-Volmer model. First, we examine different methods for modeling the voltammetry of kinetically inhomogeneous electroactive monolayers. Next, we perform a critical evaluation of the SMH model for solution-phase systems through extensive comparison to experiments under diffusion-only and convective mass transport conditions using both cyclic and square wave voltammetry. The model is compared with the Butler-Volmer model throughout and is ultimately found to be poorly suited to the parameterisation of electrode kinetics, despite its foundations in the microscopic Marcus theory. We then introduce the asymmetric Marcus-Hush model, which removes the assumption that the Gibbs energy curves for reactant and product have the same curvature. This modification results in an additional parameter which quantifies the asymmetry of the system. A similar evaluation of this model is then undertaken for both surface-bound and solution phase systems and the asymmetric model is found to be a great deal more successful than its symmetric predecessor. Finally we outline a novel technique for extracting kinetic information directly from experimental cyclic voltammetry. The method is simple to implement and is general to all electrode geometries with one-dimensional symmetry.
9

Herstellung und Charakterisierung periodisch strukturierter Dünnschichten für den Einsatz in optoelektronischen Bauteilen

Schumm, Benjamin 18 July 2013 (has links)
Transparente Elektroden finden breite Verwendung in unterschiedlichen kommerziellen Produkten. Dünnschichtsolarzellen basieren ebenso auf diesen Funktionsschichten wie Displays oder organische Leuchtdioden. Im Falle von Dünnschichtsolarzellen kann durch gezielte Einstellung der Oberflächentextur der transparenten Elektrode ein entscheidender Einfluss auf die erreichbare Effizienz genommen werden. Dabei wird eine Verlängerung der Weglänge des Lichtes im Absorbermaterial durch Mehrfachreflexionen angestrebt. Häufig werden dafür Schichten transparenter leitfähiger Oxide (TCO) gezielt texturiert. Eine weitere Möglichkeit zur Erzeugung transparenter Elektroden stellt die Verwendung feiner Metallgitter dar. Diese ermöglichen hohe Leitfähigkeiten im Bereich der Gitterstege und hohe Transparenz im Bereich zwischen den Stegen. In dieser Arbeit sollte ein auf nasschemischen Prozessen basierendes Verfahren entwickelt werden, mit dem es möglich ist, sowohl strukturierte TCO-Elektroden als auch Metallgitter unterschiedlicher Geometrien gezielt herzustellen. Die Leistungsfähigkeit der Elektroden sollte anhand der Integration in entsprechende Bauteile bewertet werden. Namentlich sollte dieser Prozess für Cd2SnO4 (engl. Cadmium Tin Oxide, CTO) als ein TCO-Material hoher Transparenz und Leitfähigkeit sowie für Silber und Kupfer als metallische Systeme anwendbar sein. Als zielführende Methode kam die Nanoprägelithographie (von engl. Nanoimprint Lithography, NIL) zum Einsatz. Dieses Verfahren erlaubt die schnelle, einfache und kostengünstige Herstellung strukturierter Oberflächen. Grundsätzlich wird dazu ein strukturierter Elastomerstempel in eine Schicht eines zu vernetzenden Materials gepresst. Während des Pressens findet die Vernetzung statt. Nach anschließender Separation von Stempel und Schicht resultiert eine strukturierte Oberfläche. Gängige Präkursorensysteme für anorganische Verbindungen, bei denen Vernetzungsprozesse ablaufen, stellen Sol-Gel-Methoden und sogenannte polymere Präkursoren dar. Für letztere werden Metallzitrate mit Ethylenglykol verestert, um ein vernetztes Polymer zu generieren. Nach thermischem Entfernen der Organik bleibt das Metalloxid zurück. Im Rahmen dieser Arbeit ist ein Präkursorensystem entwickelt worden, das Metallionen komplexiert, auf Glassubstrate beschichtet werden kann und eine thermische Polymerisation erlaubt. Aus dem erhaltenen polymeren Präkursor konnten die Zielverbindungen durch thermisches Zersetzen einerseits in Pulverform und andererseits über vorhergehende Schleuderbeschichtung in Form dünner Schichten erhalten werden. Im Falle des kubischen Cd2SnO4 wurde im Rahmen dieser Arbeit erstmals eine Nanopulver-Synthese mit phasenreinem Produkt aus flüssigem Präkursor beschrieben. Dafür stellten sich der Anteil der verwendeten organischen Bestandteile sowie die Zersetzungsgeschwindigkeit als entscheidende Einflussparameter heraus. Zudem wurden CTO Dünnschichten mit dem beschriebene Präkursor hergestellt. Eine optimale Brenntemperatur zur Erzeugung phasenreiner CTO-Schichten von 700 ‰ wurde ermittelt. Die Zersetzungsgeschwindigkeit (bzw. Aufheizrate) beeinflusste die Oberflächenmorphologie der erhaltenen Schichten maßgeblich. Eine schrittweise Zersetzung (100 ‰°C, 200 °C‰, Zieltemperatur) führte dabei in effizienter Weise zu kompakten Schichten. Diese zeigten sehr gute optische und elektronische Eigenschaften. So konnten etwa 300 nm dicke CTO-Schichten mit spezifischen Widerständen von ca. 1 • 10^(−5) Ohm m bei einer Transmission von etwa 80 % (inklusive Glassubstrat) erhalten werden. Derartige CTO-Schichten konnten erfolgreich als transparente Frontelektroden für a-Si Dünnschichtsolarzellen verwendet werden. Ein positiver Einfluss periodischer Linienstrukturen auf die Lichteinfangeigenschaften und den resultierenden Photostrom im Vergleich zu flachen CTO-Schichten wurde bestätigt. Auch für die Herstellung von CdTe-Dünnschichtsolarzellen konnten die CTO-Schichten erfolgreich eingesetzt werden. Die erreichten Effizienzen lagen jedoch lediglich im Bereich von 3 bis 3,6 %. Ein signifikanter Unterschied zwischen flachen und strukturierten Proben konnte nicht ausgemacht werden. Durch die reduzierenden Eigenschaften von Zitronensäure und Ethylenglykol gegenüber Ag+ und Cu2+ Ionen war es möglich, die Metalle in elementarer Form durch einfache thermische Behandlung des Präkursors zu erhalten. Während dieser Prozess für silberhaltige Systeme relativ einfach zu realisieren war, musste bei kupferhaltigen Proben die Bildung oxidischer Nebenphasen festgestellt werden. So war für Letzteres eine reduktive Nachbehandlung vollständig oxidierter Proben im Wasserstoffplasma zielführend und lieferte leitfähige Dünnschichten mit hohem Cu(0)-Anteil. Im Falle von Silber führte eine geeignete thermische Behandlung der Präkursorschicht zu dünnen, leitfähigen Silberschichten mit spezifischen Widerständen von ca. 6 • 10^(−8) Ohm m (Festkörper: ca.1 • 10^(−8) Ohm m). Die Übertragung des NIL-Prozesses gelang sowohl für silber- als auch kupferhaltige Systeme. Mit NIL-strukturierten Silberdünnschichten gelang so die Herstellung semitransparenter Elektroden mit spezifischen Widerständen von 2,2 • 10^(−7) Ohm m, welche in Elektrolumineszenzbauteilen verwendet wurden. Aufgrund der relativ niedrigen Temperaturen, die für die Zersetzung des Silberpräkursors nötig waren (ca. 250 ‰ ), war die Fertigung entsprechender Elektroden und Bauteile auch auf Polyimidfolien möglich. Insgesamt bleibt die Erkenntnis, dass NIL-strukturierte dünne Schichten erfolgreich in optoelektronische Bauteile integriert werden konnten. Variable Präkursorsysteme erlauben die Herstellung verschiedener Schichten und somit Anwendungen in unterschiedlichen Bauteilen. Polymere Präkursoren haben sich als geeignet für dieses Vorgehen erwiesen und können relativ einfach auf diverse oxidische Stoffsysteme übertragen werden. Gleichzeitig eignen sie sich zur Herstellung metallischer transparenter Elektroden durch NIL-Strukturierung, was insbesondere im Hinblick auf flexible Bauteile von Vorteil ist.
10

Herstellung und Charakterisierung periodisch strukturierter Dünnschichten für den Einsatz in optoelektronischen Bauteilen

Schumm, Benjamin 08 August 2013 (has links) (PDF)
Transparente Elektroden finden breite Verwendung in unterschiedlichen kommerziellen Produkten. Dünnschichtsolarzellen basieren ebenso auf diesen Funktionsschichten wie Displays oder organische Leuchtdioden. Im Falle von Dünnschichtsolarzellen kann durch gezielte Einstellung der Oberflächentextur der transparenten Elektrode ein entscheidender Einfluss auf die erreichbare Effizienz genommen werden. Dabei wird eine Verlängerung der Weglänge des Lichtes im Absorbermaterial durch Mehrfachreflexionen angestrebt. Häufig werden dafür Schichten transparenter leitfähiger Oxide (TCO) gezielt texturiert. Eine weitere Möglichkeit zur Erzeugung transparenter Elektroden stellt die Verwendung feiner Metallgitter dar. Diese ermöglichen hohe Leitfähigkeiten im Bereich der Gitterstege und hohe Transparenz im Bereich zwischen den Stegen. In dieser Arbeit sollte ein auf nasschemischen Prozessen basierendes Verfahren entwickelt werden, mit dem es möglich ist, sowohl strukturierte TCO-Elektroden als auch Metallgitter unterschiedlicher Geometrien gezielt herzustellen. Die Leistungsfähigkeit der Elektroden sollte anhand der Integration in entsprechende Bauteile bewertet werden. Namentlich sollte dieser Prozess für Cd2SnO4 (engl. Cadmium Tin Oxide, CTO) als ein TCO-Material hoher Transparenz und Leitfähigkeit sowie für Silber und Kupfer als metallische Systeme anwendbar sein. Als zielführende Methode kam die Nanoprägelithographie (von engl. Nanoimprint Lithography, NIL) zum Einsatz. Dieses Verfahren erlaubt die schnelle, einfache und kostengünstige Herstellung strukturierter Oberflächen. Grundsätzlich wird dazu ein strukturierter Elastomerstempel in eine Schicht eines zu vernetzenden Materials gepresst. Während des Pressens findet die Vernetzung statt. Nach anschließender Separation von Stempel und Schicht resultiert eine strukturierte Oberfläche. Gängige Präkursorensysteme für anorganische Verbindungen, bei denen Vernetzungsprozesse ablaufen, stellen Sol-Gel-Methoden und sogenannte polymere Präkursoren dar. Für letztere werden Metallzitrate mit Ethylenglykol verestert, um ein vernetztes Polymer zu generieren. Nach thermischem Entfernen der Organik bleibt das Metalloxid zurück. Im Rahmen dieser Arbeit ist ein Präkursorensystem entwickelt worden, das Metallionen komplexiert, auf Glassubstrate beschichtet werden kann und eine thermische Polymerisation erlaubt. Aus dem erhaltenen polymeren Präkursor konnten die Zielverbindungen durch thermisches Zersetzen einerseits in Pulverform und andererseits über vorhergehende Schleuderbeschichtung in Form dünner Schichten erhalten werden. Im Falle des kubischen Cd2SnO4 wurde im Rahmen dieser Arbeit erstmals eine Nanopulver-Synthese mit phasenreinem Produkt aus flüssigem Präkursor beschrieben. Dafür stellten sich der Anteil der verwendeten organischen Bestandteile sowie die Zersetzungsgeschwindigkeit als entscheidende Einflussparameter heraus. Zudem wurden CTO Dünnschichten mit dem beschriebene Präkursor hergestellt. Eine optimale Brenntemperatur zur Erzeugung phasenreiner CTO-Schichten von 700 ‰ wurde ermittelt. Die Zersetzungsgeschwindigkeit (bzw. Aufheizrate) beeinflusste die Oberflächenmorphologie der erhaltenen Schichten maßgeblich. Eine schrittweise Zersetzung (100 ‰°C, 200 °C‰, Zieltemperatur) führte dabei in effizienter Weise zu kompakten Schichten. Diese zeigten sehr gute optische und elektronische Eigenschaften. So konnten etwa 300 nm dicke CTO-Schichten mit spezifischen Widerständen von ca. 1 • 10^(−5) Ohm m bei einer Transmission von etwa 80 % (inklusive Glassubstrat) erhalten werden. Derartige CTO-Schichten konnten erfolgreich als transparente Frontelektroden für a-Si Dünnschichtsolarzellen verwendet werden. Ein positiver Einfluss periodischer Linienstrukturen auf die Lichteinfangeigenschaften und den resultierenden Photostrom im Vergleich zu flachen CTO-Schichten wurde bestätigt. Auch für die Herstellung von CdTe-Dünnschichtsolarzellen konnten die CTO-Schichten erfolgreich eingesetzt werden. Die erreichten Effizienzen lagen jedoch lediglich im Bereich von 3 bis 3,6 %. Ein signifikanter Unterschied zwischen flachen und strukturierten Proben konnte nicht ausgemacht werden. Durch die reduzierenden Eigenschaften von Zitronensäure und Ethylenglykol gegenüber Ag+ und Cu2+ Ionen war es möglich, die Metalle in elementarer Form durch einfache thermische Behandlung des Präkursors zu erhalten. Während dieser Prozess für silberhaltige Systeme relativ einfach zu realisieren war, musste bei kupferhaltigen Proben die Bildung oxidischer Nebenphasen festgestellt werden. So war für Letzteres eine reduktive Nachbehandlung vollständig oxidierter Proben im Wasserstoffplasma zielführend und lieferte leitfähige Dünnschichten mit hohem Cu(0)-Anteil. Im Falle von Silber führte eine geeignete thermische Behandlung der Präkursorschicht zu dünnen, leitfähigen Silberschichten mit spezifischen Widerständen von ca. 6 • 10^(−8) Ohm m (Festkörper: ca.1 • 10^(−8) Ohm m). Die Übertragung des NIL-Prozesses gelang sowohl für silber- als auch kupferhaltige Systeme. Mit NIL-strukturierten Silberdünnschichten gelang so die Herstellung semitransparenter Elektroden mit spezifischen Widerständen von 2,2 • 10^(−7) Ohm m, welche in Elektrolumineszenzbauteilen verwendet wurden. Aufgrund der relativ niedrigen Temperaturen, die für die Zersetzung des Silberpräkursors nötig waren (ca. 250 ‰ ), war die Fertigung entsprechender Elektroden und Bauteile auch auf Polyimidfolien möglich. Insgesamt bleibt die Erkenntnis, dass NIL-strukturierte dünne Schichten erfolgreich in optoelektronische Bauteile integriert werden konnten. Variable Präkursorsysteme erlauben die Herstellung verschiedener Schichten und somit Anwendungen in unterschiedlichen Bauteilen. Polymere Präkursoren haben sich als geeignet für dieses Vorgehen erwiesen und können relativ einfach auf diverse oxidische Stoffsysteme übertragen werden. Gleichzeitig eignen sie sich zur Herstellung metallischer transparenter Elektroden durch NIL-Strukturierung, was insbesondere im Hinblick auf flexible Bauteile von Vorteil ist.

Page generated in 0.0253 seconds