Return to search

Analysis of the quasicontinuum method and its application

The present thesis is on the error estimates of different energy based quasicontinuum (QC) methods, which are a class of computational methods for the coupling of atomistic and continuum models for micro- or nano-scale materials. The thesis consists of two parts. The first part considers the a priori error estimates of three energy based QC methods. The second part deals with the a posteriori error estimates of a specific energy based QC method which was recently developed. In the first part, we develop a unified framework for the a priori error estimates and present a new and simpler proof based on negative-norm estimates, which essentially extends previous results. In the second part, we establish the a posteriori error estimates for the newly developed energy based QC method for an energy norm and for the total energy. The analysis is based on a posteriori residual and stability estimates. Adaptive mesh refinement algorithms based on these error estimators are formulated. In both parts, numerical experiments are presented to illustrate the results of our analysis and indicate the optimal convergence rates. The thesis is accompanied by a thorough introduction to the development of the QC methods and its numerical analysis, as well as an outlook of the future work in the conclusion.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:581333
Date January 2013
CreatorsWang, Hao
ContributorsSuli, Endre; Ortner, Christoph
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:8bef60f0-74f1-44f5-bcbe-d64d4afad15f

Page generated in 0.0089 seconds