Les techniques d'insertion d'aiguille font partie des interventions chirurgicales les plus courantes. L'efficacité de ces interventions dépend fortement de la précision du positionnement des aiguilles dans un emplacement cible à l'intérieur du corps du patient. L'objectif principal dans cette thèse est de développer un système robotique autonome, capable d'insérer une aiguille flexible dans une structure déformable le long d'une trajectoire prédéfinie. L’originalité de ce travail se trouve dans l’utilisation de simulations inverses par éléments finis (EF) dans la boucle de contrôle du robot pour prédire la déformation des structures. La particularité de ce travail est que pendant l’insertion, les modèles EF sont continuellement recalés (étape corrective) grâce à l’information extraite d’un système d’imagerie peropératoire. Cette étape permet de contrôler l’erreur des modèles par rapport aux structures réelles et ainsi éviter qu'ils divergent. Une seconde étape (étape de prédiction) permet, à partir de la position corrigée, d’anticiper le comportement de structures déformables, en se reposant uniquement sur les prédictions des modèles biomécaniques. Ceci permet ainsi d’anticiper la commande du robot pour compenser les déplacements des tissus avant même le déplacement de l’aiguille. Expérimentalement, nous avions utilisé notre approche pour contrôler un robot réel afin d'insérer une aiguille flexible dans une mousse déformable le long d'une trajectoire (virtuelle) prédéfinie. Nous avons proposé une formulation basée sur des contraintes permettant le calcul d'étapes prédictives dans l'espace de contraintes offrant ainsi un temps d'insertion total compatible avec les applications cliniques. Nous avons également proposé un système de réalité augmentée pour la chirurgie du foie ouverte. La méthode est basée sur un recalage initial semi-automatique et un algorithme de suivi peropératoire basé sur des marqueurs (3D) optiques. Nous avons démontré l'applicabilité de cette approche en salle d'opération lors d'une chirurgie de résection hépatique. Les résultats obtenus au cours de ce travail de thèse ont conduit à trois publications (deux IROS et un ICRA) dans les conférences internationales puis à un journal (Transactions on Robotics) en cours de révision. / Needle-based interventions are among the least invasive surgical approaches to access deep internal structures into organs' volumes without damaging surrounding tissues. Unlike traditional open surgery, needle-based approaches only affect a localized area around the needle, reducing this way the occurrence of traumas and risks of complications \cite{Cowan2011}. Many surgical procedures rely on needles in nowadays clinical routines (biopsies, local anesthesia, blood sampling, prostate brachytherapy, vertebroplasty ...). Radiofrequency ablation (RFA) is an example of percutaneous procedure that uses heat at the tip of a needle to destroy cancer cells. Such alternative treatments may open new solutions for unrespectable tumors or metastasis (concerns about the age of the patient, the extent or localization of the disease). However, contrary to what one may think, needle-based approaches can be an exceedingly complex intervention. Indeed, the effectiveness of the treatment is highly dependent on the accuracy of the needle positioning (about a few millimeters) which can be particularly challenging when needles are manipulated from outside the patient with intra-operative images (X-ray, fluoroscopy or ultrasound ...) offering poor visibility of internal structures. Human factors, organs' deformations, needle deflection and intraoperative imaging modalities limitations can be causes of needle misplacement and rise significantly the technical level necessary to master these surgical acts. The use of surgical robots has revolutionized the way surgeons approach minimally invasive surgery. Robots have the potential to overcome several limitations coming from the human factor: for instance by filtering operator tremors, scaling the motion of the user or adding new degrees of freedom at the tip of instruments. A rapidly growing number of surgical robots has been developed and applied to a large panel of surgical applications \cite{Troccaz2012}. Yet, an important difficulty for needle-based procedures lies in the fact that both soft tissues and needles tend to deform as the insertion proceeds in a way that cannot be described with geometrical approaches. Standard solutions address the problem of the deformation extracting a set of features from per-operative images (also called \textit{visual servoing)} and locally adjust the pose/motion of the robot to compensate for deformations \cite{Hutchinson1996}. [...]To overcome these limitations, we introduce a numerical method allowing performing inverse Finite Element simulations in real-time. We show that it can be used to control an articulated robot while considering deformations of structures during needle insertion. Our approach relies on a forward FE simulation of a needle insertion (involving complex non-linear phenomena such as friction, puncture and needle constraints).[...]
Identifer | oai:union.ndltd.org:theses.fr/2018STRAD022 |
Date | 06 September 2018 |
Creators | Adagolodjo, Yinoussa |
Contributors | Strasbourg, De Mathelin, Michel |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0029 seconds