Vaccines are one of the most effective advances in medical science and continue to be developed for applications against infectious diseases, cancers, and autoimmunity. A common strategy for vaccine construction is the use of viral vectors derived from various virus families, with Adenoviruses (Ad) and Poxviruses (Pox) being extensively used. Studies utilizing viral vectors have shown a broad variety of vaccine-elicited immune response phenotypes. However, innate immune stimulation elicited by viral vectors and its possible role in shaping these vaccine-elicited adaptive immune responses remains unclear. Here we show that Ad and Pox vectors display profound intra- and inter-group differences in innate immune cytokine and chemokine elicitation. The CD46-utilizing vectors Ad35, Ad26, and Ad48 induced greater anti-viral and proinflammatory cytokines and chemokines relative to Ad5 in vaccinated rhesus monkeys and stimulated human PBMC. Ad fiber protein, as well as other capsid components, influenced resultant Ad vector innate stimulatory phenotypes. Analysis of human sera from Ad26-vaccinated volunteers showed similar anti-viral and proinflammatory cytokine and chemokine elicitation. Mechanistic analysis of Ad innate immune stimulation showed greater amounts Ad35 and Ad26, and small amounts of Ad5, traffic to the late endosome following infection. Innate immune stimulation by all three was reduced by inhibition of endosomal acidification, Cathepsin B, and Caspase-1, suggesting a common set of innate immune sensors triggered by Ads between 0-6 hours post-infection, in agreement with trafficking data showing Ad vector colocalization in the late endosome at similar time points. These data suggest a model mechanism explaining differences in observed Ad vector innate immune stimulation phenotypes. Similar to results obtained with Ad vectors, analysis of innate cytokine and chemokine responses elicited by Pox vectors ALVAC, MVA, and NYVAC showed that all three were distinct, with the canarypox-based vector ALVAC eliciting a unique potent proinflammatory response. Together these results reveal surprising and pronounced differences in innate immune stimulatory properties of viral vectors. Furthermore, these results could lead to possible strategies for targeted construction of vaccines for desired innate immune phenotypes, and have profound implications on vaccine design against infectious diseases and cancers, as well as gene therapy.
Identifer | oai:union.ndltd.org:harvard.edu/oai:dash.harvard.edu:1/11745711 |
Date | 25 February 2014 |
Creators | Teigler, Jeffrey Edward |
Contributors | Barouch, Dan Hung |
Publisher | Harvard University |
Source Sets | Harvard University |
Language | en_US |
Detected Language | English |
Type | Thesis or Dissertation |
Rights | open |
Page generated in 0.0017 seconds