• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 33
  • 33
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Targeting therapeutic vector expression and integration for gene therapy applications

Burnight, Erin Rae 01 May 2011 (has links)
Gene therapy is an attractive treatment for many genetic diseases because rather than treat the symptoms of the disease, it has the potential to correct the underlying defect. Cystic fibrosis and hemophilia A are two monogenic disorders that are particularly well-suited to treatment with gene therapy as a relatively small increase in the function is needed to see improvement. Gene therapy has provided some correction in both diseases using a variety of vector systems but sustained expression and long term correction have yet to be demonstrated in the clinic. It is unclear in which cell type(s) correction of the underlying defect in cystic fibrosis will be most effective. Studies indicate that the majority of CFTR expression is in the submucosal glands and ciliated epithelia – a terminally differentiated cell type (Engelhardt, J.F. et al, 2004, Journal of Clinical Investigation). Therapeutic gene transfer would thus be most effective if achieved in a progenitor cell type. Additionally, the native regulation of CFTR has not been definitively elucidated. To this end, one goal of our studies is to develop a lentiviral vector system with heterologous promoters of varying strengths and cell specificity to aid in our selection of optimal reagents for appropriate CFTR expression. We show that use of novel internal promoters from the human PLUNC and WDR65 genes direct persistent expression in the airway. Additionally, disruption of the nasal epithelium with the detergent polidocanol eliminated reporter expression in mouse airway. Two weeks post-treatment, expression returned indicating targeting of a progenitor cell population with our novel vectors. Integrating vector systems can treat chronic diseases such as cystic fibrosis because expression can persist long term from these vectors if cells with progenitor capacity are targeted (Sinn, P.L. et al, 2005, Journal of Virology). However, the potential for genotoxicity from vector-related dysregulation is a concern. Thus, a second aim of these studies was to develop a lentiviral vector that can target a specific locus in the genome. We developed a FIV vector in which the integrase was modified with a protein-binding domain that when co-delivered with a fusion consisting of the cognate protein and a DNA binding domain would tether the vector to the appropriate locus. Unfortunately, integrase modification rendered the vector catalytically inactive. Lastly, we hoped to develop a non-viral transposon vector system (piggyBac) for gene transfer applications to the liver for treatment of hemophilia A. The recent demonstration that piggyBac transposase is highly active in mammalian cells warrants further development of this vector as an alternative to other non-viral integrating vector systems currently under investigation. We showed persistent reporter and therapeutic transgene expression in the livers of mice treated with the piggyBac vector. Furthermore, we show for the first time in vivo persistence and increased expression from the recently developed hyperactive transposase. The development of integrating vectors targeted to specific tissues or genomic loci is important in for treatment of the monogenic diseases cystic fibrosis and hemophilia A.
2

Differential Innate Immune Stimulation Elicited by Adenovirus and Poxvirus Vaccine Vectors

Teigler, Jeffrey Edward 25 February 2014 (has links)
Vaccines are one of the most effective advances in medical science and continue to be developed for applications against infectious diseases, cancers, and autoimmunity. A common strategy for vaccine construction is the use of viral vectors derived from various virus families, with Adenoviruses (Ad) and Poxviruses (Pox) being extensively used. Studies utilizing viral vectors have shown a broad variety of vaccine-elicited immune response phenotypes. However, innate immune stimulation elicited by viral vectors and its possible role in shaping these vaccine-elicited adaptive immune responses remains unclear. Here we show that Ad and Pox vectors display profound intra- and inter-group differences in innate immune cytokine and chemokine elicitation. The CD46-utilizing vectors Ad35, Ad26, and Ad48 induced greater anti-viral and proinflammatory cytokines and chemokines relative to Ad5 in vaccinated rhesus monkeys and stimulated human PBMC. Ad fiber protein, as well as other capsid components, influenced resultant Ad vector innate stimulatory phenotypes. Analysis of human sera from Ad26-vaccinated volunteers showed similar anti-viral and proinflammatory cytokine and chemokine elicitation. Mechanistic analysis of Ad innate immune stimulation showed greater amounts Ad35 and Ad26, and small amounts of Ad5, traffic to the late endosome following infection. Innate immune stimulation by all three was reduced by inhibition of endosomal acidification, Cathepsin B, and Caspase-1, suggesting a common set of innate immune sensors triggered by Ads between 0-6 hours post-infection, in agreement with trafficking data showing Ad vector colocalization in the late endosome at similar time points. These data suggest a model mechanism explaining differences in observed Ad vector innate immune stimulation phenotypes. Similar to results obtained with Ad vectors, analysis of innate cytokine and chemokine responses elicited by Pox vectors ALVAC, MVA, and NYVAC showed that all three were distinct, with the canarypox-based vector ALVAC eliciting a unique potent proinflammatory response. Together these results reveal surprising and pronounced differences in innate immune stimulatory properties of viral vectors. Furthermore, these results could lead to possible strategies for targeted construction of vaccines for desired innate immune phenotypes, and have profound implications on vaccine design against infectious diseases and cancers, as well as gene therapy.
3

DEVELOPING A QUANTITATIVE PCR ASSAY FOR DETECTING VIRAL VECTOR SHEDDING FROM ANIMALS

Chinnasamy, Swathee January 2011 (has links)
No description available.
4

Development of a novel lentiviral vaccine vector and characterisation of in vitro immune responses

McLean, Rebecca Kathryn January 2018 (has links)
Vaccines are a highly effective means of preventing infectious disease. However, for many diseases of livestock the available vaccines are ineffective or sub-optimal. This is partly due to challenges surrounding the specific targeting of antigen presenting cells (APCs). In order to improve the delivery of protective antigens to host APCs, a novel lentiviral vector derived from visna / maedi virus (VMV) has been developed. Initial characterisation using an enhanced green fluorescent protein (eGFP) reporter transgene found that the novel VMV vector efficiently transduced a wide range of cell lines including cells of ovine, human, murine, bovine and caprine origin. In addition, the VMV vector was found to elicit sustained transgene expression for at least 4 weeks in rapidly dividing cell lines. One of the most important factors for acceptable vaccines is their safety. Therefore, in order to increase the bio-safety of the VMV vector, integration-defective and self-inactivating forms were produced. Integration-defective VMV lentiviral vectors (IDLVs) were found to produce 1-LTR circular episomes favourably over integrated provirus following the transduction of target feline and ovine cell lines. This led to a decrease in transgene expression over time in dividing cells. In contrast, in non-dividing cells transgene expression was maintained at a similar level to integration-competent VMV vectors. Self-inactivating (SIN) VMV vectors were constructed and found to have a significant decrease in LTR activity. Transgene expression was maintained by the insertion of an internal promoter derived from human cytomegalovirus (CMV) acting directly on the transgene. When self-inactivating and integration-defective modifications were incorporated into the same vector particle, a 4-fold decrease in transduction relative to the parent vector was observed. Ovine monocyte-derived dendritic cells (MDDCs) and macrophages (MDMs) were found to be efficiently transduced by the VMV vector, whereas lentiviral vectors derived from HIV-1 poorly transduced both of these primary cell populations. Following this work, the ability to deliver pathogen genes into APCs was studied using the Chlamydia abortus (C. abortus) major outer membrane protein (MOMP) as the transgene. C. abortus is the most common infectious cause of ovine abortion worldwide and MOMP has previously been shown to stimulate strong antibody responses after vaccination. Unexpectedly, the VMV vector encoding either eGFP or MOMP was found to induce apoptosis in MDDCs and MDMs using Annexin V staining. Apoptotic cells were detectable as early as 6 hours post-transduction of cells. Furthermore, release of the pro-inflammatory cytokine IL-1β was associated with the formation of late apoptotic cells. Apoptotic bodies produced post-transduction were able to be phagocytosed by immature MDDCs and the transgene efficiently cross-presented to T-cells. The ability of the novel VMV vector to induce a suitable recall immune responses was investigated using an in vitro model. Here, an autologous population of MDDCs were cultured with the apoptotic bodies produced post-transduction before the addition of autologous PBMC. Proteins from the apoptotic bodies were presented by the MDDCs to PBMC leading to a strong, antigen specific recall immune response against C. abortus MOMP. This was proven by the detection of cytokines IFNγ and IL-10 in the co-culture supernatant from PBMC activated by the MOMP transgene cross-presented by MDDCs. No release of IL-4 or IL-17A could be detected. These data presented in this thesis show the potential for improving delivery of antigens in livestock vaccines by the use of lentiviral vectors. In addition, this vector system provides a strong base for the study of other potential protective antigens in vitro.
5

Investigation of Sf-9 Cell Metabolism Before and After Baculovirus Infection Using Biovolume: a Case for the Improvement of Adeno-Associated Viral Vector Production

Cheng, Yu-Lei January 2009 (has links)
Adeno-associated viral (AAV) vectors have been shown to be potential vectors for the treatment of diseases, including protocols using RNA interference (RNAi). AAV vector production in insect cells using the baculovirus vector expression system has been a major advance in furthering their use. A major limitation of AAV vector production at high cell densities is a reduction in cell specific yield, which is thought to be caused by nutrient limitations. Nutrient consumption profiles after infection, however, have still not been fully characterized, probably due to the difficulty of characterizing consumption patterns based on increases in cell density, which are minimal after infection. It is known, however, that cells increase in size after infection; therefore, the driving hypothesis of this thesis was that biovolume, or the total volume enclosed by the membrane of viable cells, which accounts for both cell density and cell size, could be used to characterize nutrient consumption patterns both before and after infection. The relationships between nutrient consumption and change in cell density and biovolume were examined by statistical correlation analysis. It was found that in uninfected cultures, no significant correlation differences, using either cell density or biovolume, were observed since cell size remained relatively constant; however, in infected cultures, more than half of the nutrients were found to be better correlated with biovolume than with cell density. When examining the nutrient and metabolite concentration data on a biovolume basis, nutrient consumption remained relatively constant. It is hypothesized that since it has been reported that the rate of cell respiration increases after infection, a more complete oxidation of nutrients occurs to satisfy increased energy needs during infection. By having a basis to base nutrient consumption, we can better assess the needs of the culture. This will allow the development of feeding strategies based on cellular requirements instead of supplying the cultures with generic nutrient cocktails. It is expected that different nutrient mixtures can be used to target different goals such as 1) enhancing cell growth (before infection) and 2) improving the production of recombinant products (after infection). This will not only increase the efficiency of AAV vector production, but will also reduce the cost of production and make the process more economical by eliminating the addition of unnecessary nutrients. Although promising, some limitations of using biovolume still exist. A first limitation is the biovolume measure itself. This measure requires a device that measures cell size, such as a Coulter Counter Multisizer (Beckman-Coulter, Miami, FL, USA), which can be expensive. Capacitance probes can be a more cost effective tool to estimate biovolume; however, the availability of capacitance probes is still not common. A second limitation is the interpretation of the biovolume profiles, which can depend strongly on the fraction of cells in culture that are infected. If the culture is infected asynchronously, then there will be many different cell populations in the culture. Future work may require separating the cell size distribution into populations of viable and non-viable cells to get a better biovolume measure as opposed to assuming that viability is well distributed over the entire range of cell sizes. In infected cultures where the viability may be low, it is likely that the cell size distribution of non-viable cells will be concentrated at the lower end of the distribution (smaller diameter) rather than being well distributed over the whole range. If this is the case, for the infected cultures with low viability, the mean cell diameter calculated will be underestimated, which will lead to an overestimation of nutrient consumption for cultures with low viability. This will certainly affect the accuracy of the nutrient consumption profiles. By separating cell size distribution data into different cell populations of viable and nonviable, the accuracy can be improved.
6

Investigation of Sf-9 Cell Metabolism Before and After Baculovirus Infection Using Biovolume: a Case for the Improvement of Adeno-Associated Viral Vector Production

Cheng, Yu-Lei January 2009 (has links)
Adeno-associated viral (AAV) vectors have been shown to be potential vectors for the treatment of diseases, including protocols using RNA interference (RNAi). AAV vector production in insect cells using the baculovirus vector expression system has been a major advance in furthering their use. A major limitation of AAV vector production at high cell densities is a reduction in cell specific yield, which is thought to be caused by nutrient limitations. Nutrient consumption profiles after infection, however, have still not been fully characterized, probably due to the difficulty of characterizing consumption patterns based on increases in cell density, which are minimal after infection. It is known, however, that cells increase in size after infection; therefore, the driving hypothesis of this thesis was that biovolume, or the total volume enclosed by the membrane of viable cells, which accounts for both cell density and cell size, could be used to characterize nutrient consumption patterns both before and after infection. The relationships between nutrient consumption and change in cell density and biovolume were examined by statistical correlation analysis. It was found that in uninfected cultures, no significant correlation differences, using either cell density or biovolume, were observed since cell size remained relatively constant; however, in infected cultures, more than half of the nutrients were found to be better correlated with biovolume than with cell density. When examining the nutrient and metabolite concentration data on a biovolume basis, nutrient consumption remained relatively constant. It is hypothesized that since it has been reported that the rate of cell respiration increases after infection, a more complete oxidation of nutrients occurs to satisfy increased energy needs during infection. By having a basis to base nutrient consumption, we can better assess the needs of the culture. This will allow the development of feeding strategies based on cellular requirements instead of supplying the cultures with generic nutrient cocktails. It is expected that different nutrient mixtures can be used to target different goals such as 1) enhancing cell growth (before infection) and 2) improving the production of recombinant products (after infection). This will not only increase the efficiency of AAV vector production, but will also reduce the cost of production and make the process more economical by eliminating the addition of unnecessary nutrients. Although promising, some limitations of using biovolume still exist. A first limitation is the biovolume measure itself. This measure requires a device that measures cell size, such as a Coulter Counter Multisizer (Beckman-Coulter, Miami, FL, USA), which can be expensive. Capacitance probes can be a more cost effective tool to estimate biovolume; however, the availability of capacitance probes is still not common. A second limitation is the interpretation of the biovolume profiles, which can depend strongly on the fraction of cells in culture that are infected. If the culture is infected asynchronously, then there will be many different cell populations in the culture. Future work may require separating the cell size distribution into populations of viable and non-viable cells to get a better biovolume measure as opposed to assuming that viability is well distributed over the entire range of cell sizes. In infected cultures where the viability may be low, it is likely that the cell size distribution of non-viable cells will be concentrated at the lower end of the distribution (smaller diameter) rather than being well distributed over the whole range. If this is the case, for the infected cultures with low viability, the mean cell diameter calculated will be underestimated, which will lead to an overestimation of nutrient consumption for cultures with low viability. This will certainly affect the accuracy of the nutrient consumption profiles. By separating cell size distribution data into different cell populations of viable and nonviable, the accuracy can be improved.
7

RNA Interferenz unter Verwendung eines lentiviralen Vektosystems zur Modifikation einer persistierenden Masernvirusinfektion

Hönemann, Mario 05 October 2011 (has links) (PDF)
Die Vorliegende Arbeit beschäftige sich mit der Etablierung eines lentiviralen Vektorsystems, mit dem es möglich ist die RNA-Interferenz experimentell zu nutzen. Dafür wurden SEC Sequenzen in den Vektor pGJ3-eGFP kloniert. Nach Optimierung der Transfektions und Transduktionsschritte wurden im Anschluss rekombinante virale Partikel hergestellt. Zur Überprüfung der Effektivität der Induzierten RNA-Interferenz erfolgte die Transduktion einer persistierend mit Masern infizierten Zelllinie (C6SSPE). Ziel der siRNA Sequenzen war dabei die mRNA des N-Proteins, welches eine zentrale Rolle im viralen Replikationszyklus spielt. Die Reduktion der mRNA wurde über quantitative real time RT-PCR nachgewiesen.
8

Estudo físico-químico de nanopartículas de DNA com derivado de quitosana contendo grupos fosforilcolina

Picola, Isadora Pfeifer Dalla [UNESP] 09 October 2009 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:55Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-10-09Bitstream added on 2014-06-13T18:08:50Z : No. of bitstreams: 1 picola_ipd_me_sjrp.pdf: 3509245 bytes, checksum: 8de529c6653b0006e089cc79f4b6700d (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Na presente dissertação, foram preparadas quitosanas com diferentes massas molares, 16 kDa, 18 kDa e 29 kDa, e com diferentes graus de substituição de fosforilcolina (PC). As quitosanas de baixa massa molecular foram obtidas pela degradação de quitosana desacetilada. Essas quitosanas foram purificadas com membranas de diálise de tamanho de exclusão apropriadas e caracterizadas por meio de titulação potenciométrica, H-RMN e Cromatografia de permeação em gel (GPC). O estudo físico-químico da interação das quitosanas com DNA foi realizado utilizando-se as técnicas de fluorescência, eletroforese, microscopia óptica, microscopia eletrônica de transmissão e espalhamento de luz dinâmico. As propriedades avaliadas foram a eficiência de interação, a estabilidade dos complexos, potencial zeta e tamanho de poliplexos. Os experimentos foram conduzidos variando-se a força iônica, pH do meio, massa molar de policátion e razão de cargas para quitosanas com diferentes conteúdos de grupos PC. Além das quitosanas preparadas durante o projeto, também se utilizou quitosanas de diferentes massas molares, de 5 e 150 kDa, para estudo dos poliplexos em diferentes forças iônicas. Os resultados mostraram que a eficiência de interação entre quitosana e DNA é reduzida com a presença do grupo PC. Nos estudos de DLS, verificou-se que, em baixos valores de pH, o método de coacervação permite a obtenção de nanopartículas de 150 a 300 nm. A força de interação, o tamanho e a estabilidade das nanopartículas dependem do pH do meio, da força iônica da solução, da massa molar e do conteúdo de fosforilcolina. Em pHs mais elevados, os poliplexos são mais estáveis quanto maior a massa molar ou quando há a presença de grupo fosforilcolina. O trabalho permitiu ampliar os estudos sobre os efeitos da força iônica, do pH, da massa molar e conteúdos de PC e como, tais parâmetros... / In this work chitosans with different molecular weights and their derivatives containing different amounts of phosphorylcholine (PC) were prepared. The low molecular weights chitosans were obtained by degradation of deacetylated chitosan. These chitosans were purified by dialysis membranes of appropriate sizes of exclusion and characterized by potentiometric titration, H-NMR and gel permeation chromatography (GPC) techniques. The physico-chemical study of the interaction between chitosan and DNA was performed using the ethidium bromide fluorescence assay, gel electrophoresis, optical microscopy, transmission electron microscopy and dynamic light scattering techniques. The experiments were carried out at varying experimental conditions as ionic strength, pH, and charge ratio with chitosans of different molecular weights and phosphorylcholine contents. The results showed that the efficiency of the interaction between chitosan and DNA was reduced with the incorporation of PC on the chitosan chain. The results showed that at low pH values the sizes of the nanoparticles obtained by the coacervation method varied from 150 to 300 nm. The strength of the interaction and the size of the nanoparticles were shown to be dependent of pH, ionic strength, chitosan molecular weight and of the phosphorylcholine contents. The study at high pH values showed that more stable nanoparticles were formed with chitosans having the higher molecular weights. The attaching of phosphorylcholine groups to the chitosan main chain allows obtaining more stable particles at high pH values. In this work we provide new insights on the effects of molecular weight, pH, ionic strength and PC contents on both the chitosan-DNA interaction and the stability of formed nanoparticles
9

Composition génétique de semences vaccinales H3N2 et construction d'un virus vecteur : une histoire d'encapsidation de segments chez les virus influenza de type A / Genetic composition of H3N2 vaccine seeds and vector virus construction : a story of packaging in type A Influenza viruses

Bergeron, Corinne 11 December 2009 (has links)
L’empaquetage des huit segments du génome des virus influenza de type A est une des étapes clef du cycle viral. Il intervient également dans l’apparition de virus réassortants, les virus pandémiques par exemple, ce qui en fait un enjeu fondamental de la recherche actuelle.Nous avons étudié ce mécanisme au cours de deux études, la première portant sur les vaccins antigrippaux (réassortiment), la seconde visant à construire un virus vecteur (incorporation d’un segment hétérologue). Les semences vaccinales sont obtenues par co-infection d’oeufs de poule embryonnés avec deux souches virales une donneuse (souche circulante de référence) et une accepteuse (A/Puerto Rico/8/34 (H1N1) (PR8)). L'analyse de la composition génétique de treize semences vaccinales H3N2 montre que le segment PB1 de la souche donneuse est présent dans plus de 50 % des semences analysées et qu’une grande variété de réassortants,allant de 6:2 à 2:6 (PR8:H3N2), peut résulter de ces coinfections. Des expériences de compétition d'encapsidation de segments à l’aide de la génétique inverse révèlent que l'encapsidation sélective du segment PB1 dépend de son environnement génétique notamment l’origine virale des segments HA et NA. La seconde partie de mon travail de thèse a été consacrée à la construction d’un vecteur réplicatif sur la base d’un virus influenza H3 naturel sans segment NA. Aucune des constructions contenant le transgène gfp n’a été incorporée dans les particules virales, contrairement à ce qui a été décrit dans la littérature. Bien que les mécanismes moléculaires régissant l’incorporation des segments des virus influenza A demeurent très complexes, le fond génétique semble être déterminant pour ce processus. / The packaging of the eight segments corresponding to the influenza A viruses genomeis a key process of the viral replication as well as a stake of actual scientific researchesbecause it leads to reassortant viruses, e.g. pandemic viruses. We studied the two main facetsof influenza segment packaging: reassortment, during vaccine seeds production and foreignsegment incorporation for influenza vector construction. Vaccine seeds are produced bycoinfection of hens’ eggs with two viruses, a donor one (reference circulating strain) and anacceptor one (A/Puerto Rico/8/34 (H1N1) (PR8)). Analysis of internal genetic composition ofthirteen H3N2 vaccine seeds reveals that PB1 segment of H3N2 donor strain is incorporatedin more than fifty per cent of the cases. Moreover, coinfection events lead to an extremelywide range of reassortants from 6:2 to 2:6 (PR8:H3N2). Segment incorporation competitionassays performed using plasmid-based reverse genetics show that selective packaging of PB1segment is based on genetic environment, i.e. viral origin of HA and NA segments. Thesecond part of my PhD work has been devoted to replicative influenza vector based on H3virus isolated from patients without NA segment at the native stage. None of the gfptransgenic constructions containing reporter gene have been incorporated in viral particles,contrary to literature studies performed using H1N1 laboratory-adapted strains. Even ifmolecular mechanisms controlling influenza A viruses segments incorporation remain stillcomplex, genetic background seems to be an essential element which must be considered withinterest.
10

Etude de l'impact de la sur-expression de la partie C-terminale de LRRK2 mutée G2019S dans les neurones dopaminergiques de la substance noire. / Effect of the overexpression of the C-terminal fragment of LRRK2 harboring the G2019S substitution in dopaminergic neurons

Cresto, Noemie 06 June 2017 (has links)
Les protéines alpha-synucléine (α-syn) et leucine-rich repeat kinase 2 (LRRK2) sont deux protéines ayant un rôle majeur dans la physiopathologie de la maladie de Parkinson (MP) et interviennent aussi bien dans les formes dites sporadiques que dans les formes familiales. La mutation G2019S du gène codant pour LRRK2 est la mutation la plus fréquente. Cette mutation induit une augmentation de l’activité kinase de LRRK2 qui conduit à sa toxicité. Plusieurs hypothèses convergent vers l’idée que LRRK2 et l’α-syn interagiraient pour conduire à la dysfonction et/ou la mort des neurones dopaminergiques (DA) de la substance noire (SNc) dans la MP. Dans la première partie de cette étude, différentes formes sauvage (WT) ou mutée (G2019S) de LRRK2 ont été surexprimées spécifiquement dans les neurones de la SNc via l’utilisation de vecteurs lentiviraux (LV) et adéno-viraux associés (AAV). La question principale de cette étude était d’évaluer si l’expression spécifiquement neuronale de LRRK2 induisait la dégénérescence des neurones DA de la SNc. Nous avons généré des constructions comportant uniquement la partie C-terminale de LRRK2 (ΔLRRK2) en aval du domaine LRR. In vitro, le fragment ΔLRRK2G2019S présente une activité kinase supérieure au fragment ΔLRRK2WT avec une augmentation d’activité comparable à la forme entière de LRRK2. In vivo, six mois après l’injection (PI) de ΔLRRK2 WT ou G2019S dans la SNc, les mesures du nombre de neurones montrent que seul le fragment ΔLRRK2G2019S induit une mort neuronale significative (30%) comparé à la forme ΔLRRK2WT, uniquement lorsque l’expression est générée via des vecteurs AAV. Ces résultats suggèrent que l’expression purement neuronale d’un fragment contenant le domaine kinase de LRRK2 est suffisante pour induire une dégénérescence de la SN. Dans la seconde partie du projet, nous avons étudié l’hypothèse que ΔLRRK2G2019S via son activité kinase amplifiée, pourrait augmenter la toxicité le l’α-syn mutée A53T. Pour répondre à cette question, les vecteurs AAV codant pour ΔLRRK2 G2019S ou une forme inactive de la kinase (ΔLRRK2G2019S/D1994A), et celui codant pour l’α-syn A53T ont été co-injectés dans la SNc. Les analyses réalisées à 6 et 15 semaines PI montrent que ΔLRRK2G2019S augmente la mort neuronale induite par l’α-syn A53T d’une manière kinase dépendante. Tous ces résultats supportent l’hypothèse que l’existence d’une interaction fonctionnelle entre LRRK2 et l’α-syn pourrait jouer un rôle fondamental dans la physiopathologie de la MP offrant des possibilités de stratégie de neuroprotection ciblant l’interaction LRRK2/α-syn. / Alpha-synuclein (α-syn) and leucine-rich repeat kinase 2 (LRRK2) proteins are likely to play crucial roles both in sporadic and familial forms of Parkinson’s disease (PD). The most prevalent mutation in LRRK2 is the G2019S substitution which induces neurotoxicity through a marked increase of its kinase activity. A possible interplay between LRRK2 and α-syn may be involved in the dysfunction and/or in the death of dopaminergic (DA) neurons in the substantia nigra (SNc) in PD. In the first part of the study, we evaluated whether the overexpression of LRRK2G2019S using lentiviral vectors (LVs) and adeno-associated virus (AAV2/9), which can overexpress transgenes selectively in neurons could trigger neurodegeneration in the SNc, in other words, whether cell-autonomous mechanisms are sufficient to trigger the degeneration of DA neurons. We generated constructs corresponding to the C-terminal domain of LRRK2 (ΔLRRK2) containing the kinase domain. Results of assays performed in vitro indicated that ΔLRRK2 retains biochemical properties of full length LRRK2. Six months after the stereotaxic injection of LV-ΔLRRK2G2019S in the SNc, the number of DA neurons was unchanged, however, the infection of the SNc with AAV-ΔLRRK2G2019S but not with AAV-ΔLRRK2WT induced a significant ~30% loss of DA neurons. These results suggested that neuronal overexpression of the mutant kinase domain of LRRK2 was sufficient to trigger neurodegeneration in the SNc in the adult brain. In the second part of the study, we aimed at studying whether ΔLRRK2G2019S could increase the neurotoxicity of a mutant form of α-syn (A53T mutation) in vivo in DA neurons. We used a co-infection approach with AAV vectors encoding the α-synA53T, and ΔLRRK2 G2019S alone or with the D1994A mutation (ΔLRRK2G2019S/D1994A) that inactivates the kinase activity of LRRK2. AAVs were stereotaxically co-injected into the rat SNc and histological evaluation was performed at 6 and 15 weeks (early and late time points) post-infection. Results showed that ΔLRRK2G2019S increased the toxicity of α-synA53T in a kinase-dependent manner. Altogether, the present study supports the hypothesis that a functional interaction between LRRK2 and α-syn may play a key role in PD pathogenesis. The new “double hit” model we developed in rats may be of interest to test novel neuroprotective strategies targeting LRRK2/α-syn in vivo.

Page generated in 0.032 seconds