Return to search

Local pose estimation of feature points for object based augmented reality. / Detecção de poses locais de pontos de interesse para realidade aumentada baseadas em objetos.

Usage of real objects as links between real and virtual information is one key aspect in augmented reality. A central issue to achieve this link is the estimation of the visuospatial information of the observed object, or in other words, estimating the object pose. Different objects can have different behaviors when used for interaction. This not only encompasses changes in position, but also folding or deformations. Traditional researches in the area solve those pose estimation problems using different approaches, depending on the type of the object. Additionally, some researches are based only on positional information of observed feature points, simplifying the object information. In this work, we explore the pose estimation of different objects by gathering more information from the observed feature points, and obtaining the local poses of such points, which are not explored in other researches. We apply this local pose estimation idea in two different capturing scenarios, reaching two novel approaches of pose estimation: one based on RGB-D cameras, and another based on RGB and machine learning methods. In the RGB-D based approach, we use the feature point orientation and near surface to obtain its normal; then, find the local 6 degrees-of-freedom (DoF) pose. This approach gives us not only the rigid object pose, but also the approximated pose of deformed objects. On the other hand, our RGB based approach explores machine learning with local appearance changes. Unlike other RGB based works, we replace the complex non-linear systems solvers with a fast and robust method, reaching local rotation of the observed feature points, as well as, full 6 DoF rigid object pose with dramatically lower real-time calculation demands. Both approaches show us that gathering local poses can bring information for the pose estimation of different types of objects. / O uso de objetos reais como meio de conexão entre informações reais e virtuais é um aspecto chave dentro da realidade aumentada. Uma questão central para tal conexão é a estimativa de informações visuo-espaciais do objeto, ou em outras palavras, a detecção da pose do objeto. Diferentes objetos podem ter diferentes comportamentos quando utilizados em interações. Não somente incluindo a mudança de posição, mas também sendo dobradas ou deformadas. Pesquisas tradicionais solucionam tais problemas de detecção usando diferentes abordagens, dependendo do tipo de objeto. Adicionalmente, algumas pesquisas se baseiam somente na informação posicional dos pontos de interesse, simplificando a informação do objeto. Neste trabalho, a detecção de pose de diferente objetos é explorada coletando-se mais informações dos pontos de interesse observados e, por sua vez, obtendo as poses locais de tais pontos, poses que não são exploradas em outras pesquisas. Este conceito da detecção de pose locais é aplicada em dois ambientes de capturas, estendendo-se em duas abordagens inovadoras: uma baseada em câmeras RGB-D, e outra baseada em câmeras RGB e métodos de aprendizado de maquinas. Na abordagem baseada em RGB-D, a orientação e superfície ao redor do ponto de interesse são utilizadas para obter a normal do ponto. Através de tais informações a pose local é obtida. Esta abordagem não só permite a obtenção de poses de objetos rígidos, mas também a pose aproximada de objetos deformáveis. Por outro lado, a abordagem baseada em RGB explora o aprendizado de máquina aplicado em alterações das aparências locais. Diferentemente de outros trabalhos baseados em câmeras RGB, esta abordagem substitui solucionadores não lineares complexos com um método rápido e robusto, permitindo a obtenção de rotações locais dos pontos de interesse, assim como, a pose completa (com 6 graus-de-liberdade) de objetos rígidos, com uma demanda computacional muito menor para cálculos em tempo-real. Ambas as abordagens mostram que a coleta de poses locais podem gerar informações para a detecção de poses de diferentes tipos de objetos.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-22092016-110832
Date27 June 2016
CreatorsTokunaga, Daniel Makoto
ContributorsTori, Romero
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguageEnglish
Detected LanguagePortuguese
TypeTese de Doutorado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0026 seconds