Return to search

High-voltage partial-core resonant transformers

This thesis first describes the reverse method of transformer design. An existing magnetic model for full-core shell-type transformers, based on circuit theory, is summarised. A magneto-static finite element model is introduced and two sample transformers are analysed. The magnetic model based on finite element analysis is shown to be more accurate than the model based on circuit theory.


Partial-core resonant transformers are then introduced and their characteristics are explained using an equivalent circuit model. A method of measuring the winding inductances under resonant operation is developed and used to investigate the characteristics of two different tuning methods. A finite element model of the partial-core resonant transformer is developed by adopting the model for full-core shell-type transformers.


The model results accurately match the measured inductance variation characteristics of three sample transformers and predict the onset of core saturation in both axial-offset and centre-gap arrangements. A new design of partial-core resonant transformer is arrived at, having an alternative core and winding layout, as well as multiple winding taps. The finite element model is extended to accommodate the new design and a framework of analysis tools is developed. A general design methodology for partial-core resonant transformers with fixed inductance is developed. A multiple design method is applied to obtain an optimal design for a given set of specifications and restrictions. The design methodology is then extended to devices with variable inductance.


Three design examples of partial-core resonant transformers with variable inductance are presented. In the first two design examples, existing devices are replaced. The new transformer designs are significantly lighter and the saturation effects are removed. The third design example is a kitset for high-voltage testing, with the capability to test any hydro-generator stator in New Zealand. The kitset is built and tested in the laboratory, demonstrating design capability. Other significant test results, for which no models have yet been developed, are also presented. Heating effects in the core are reduced by adopting an alternative core construction method, where the laminations are stacked radially, rather than in the usual parallel direction. The new kitset is yet to be used in the field.

Identiferoai:union.ndltd.org:canterbury.ac.nz/oai:ir.canterbury.ac.nz:10092/2161
Date January 2008
CreatorsBell, Simon Colin
PublisherUniversity of Canterbury. Electrical and Computer Engineering
Source SetsUniversity of Canterbury
LanguageEnglish
Detected LanguageEnglish
TypeElectronic thesis or dissertation, Text
RightsCopyright Simon Colin Bell, http://library.canterbury.ac.nz/thesis/etheses_copyright.shtml
RelationNZCU

Page generated in 0.0018 seconds