Pseudomonas aeruginosa is an opportunistic pathogen that is a serious problem for immuno-compromised patients. Toxins such as exoenzyme (Exo) S, ExoT, ExoY and ExoU are secreted and translocated from the bacteria into the eukaryotic cell via the bacterial encoded type III secretion system. Our research focuses on ExoS, a bifunctional toxin comprising a Rho-GTPase-activating protein domain (RhoGAP) and a 14-3-3 dependent ADP-ribosyltransferase domain. In addition, ExoS contains a membrane localization domain termed MLD. In this study, cell lines expressing activated forms of various components of the Ras signaling pathway have been used to understand the functional and mechanical activation of ExoS-ADP-ribosyltransferase activity and to reveal its cellular targets in the cell. Our observations suggested that Ras GTPase is the dominant target by which ExoS mediates cell death and activated Ras is able to protect cells against cell death, regardless of whether it has been ADP-ribosylated by ExoS. It has been reported that the 14-3-3 cofactor protein is required for ADP-ribosyltransferase activity of ExoS and a phosphorylation-independent interaction occurs between 14-3-3 and the C-terminal part of ExoS. We have undertaken a deeper analysis including structural and biological investigation of this interaction. Our results suggested that leucine-428 of ExoS is the most critical residue for ExoS enzymatic activity. Structural analysis showed that ExoS binds to 14-3-3 in a novel binding mode mostly relying on hydrophobic contacts. Our structure was supported by biochemical and cytotoxicity analyses, which revealed that the substitution of important residues of ExoS significantly weakens the ability of ExoS to modify endogenous targets such as RAS/RAP1 and to induce cell death. Further, mutation of key residues within the ExoS binding site for 14-3-3 impairs virulence in a mouse pneumonia model. Leucine residues-422, 423, 426, and 428 of ExoS are important for the interaction with the ″roof″ of the amphiphatic groove of 14-3-3. In conclusion, we show the mechanism of cell signal transduction pathways affected upon ExoS infection and also demonstrate that the hydrophobic residues of ExoS in 14-3-3 interaction motif have a significant role for ExoS enzymatic activity.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-1411 |
Date | January 2007 |
Creators | Yasmin, Lubna |
Publisher | Umeå universitet, Medicinsk biovetenskap, Umeå : Medicinsk biovetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Doctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | Umeå University medical dissertations, 0346-6612 ; 1125 |
Page generated in 0.0022 seconds