With increasing awareness of potential security threats there is a growing interest in communication security for spacecraft control and data. Traditionally commercial and scientific missions have relied on their uniqueness to prevent security breaches. During time the market has changed with open systems for mission control and data distribution, increased connectivity and the use of existing and shared infrastructure. Therefore security layers are being introduced to protect spacecraft communication. In order to mitigate the perceived threats, the Consultative Committee for Space Data Systems (CCSDS) has proposed the addition of communication security in the various layers of the communication model. This thesis describes and discuss their proposal and look into how this application should be implemented into the data link layer of the communication protocol to protect from timing attacks. An implementation of AES-CTR+GMAC is constructed in software to compare different key lengths and another implementation is constructed in synthesized VHDL for use on hardware to investigate the impact on area consumption on the FPGA as well as if it is possible to secure it from cache-timing attacks.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-168808 |
Date | January 2020 |
Creators | Sundberg, Sarah |
Publisher | Linköpings universitet, Informationskodning |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.002 seconds