There is a strong current trend in automation towards These often systems that can handle small to medium batch sizes are also often associated with In prototyping situations. Batch numbers High complexity the application described Is for British Airways Heathrow Airport where the number of variations pattern of their meal trays Is large. The batch size the assembly variations Is also extremely variable. Catering at in assembly of each of This thesis describes the justification and design of anautomatic system to assemble these trays whilst retaining the flexibility Inherent In the current manual assembly arrangement.The work examines system layouts. Considering each possibility particularly from the flexibility and potential reliabilityaspects. This leads to the consideration of Industrial robots because of their Inherent flexibility. Consequently the variousconfigurations of robots are examined to assess the suitability of each In a cell arrangement the system which was chosen forIts potential reliability. The work continues by developing the Ideas and techniques of parts feeding to realise the maximumbenefits from a robotic cell system." The thesis describes novel magazining arrangements for handling each of the Items which make. up the tray assembly. Two major developments are described. one for the handling of stackable Items and the other for handling small discrete parts from bulk. Both systems are flexible to accomodate variations In part dimensions and possess ability to be quickly re-configured - to handle completely different parts. The equipment designed and constructed for British Airwaysuses Ideas that could also find use In many similar applications where the components have the same characteristics.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:375044 |
Date | January 1986 |
Creators | Bedford, Stephen James |
Publisher | Durham University |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://etheses.dur.ac.uk/6797/ |
Page generated in 0.0154 seconds