Return to search

Risk Modeling of Sustainable Mutual Funds Using GARCH Time Series / Riskmodellering av hållbara fonder med GARCH-tidsserier

The demand for sustainable investments has seen an increase in recent years. There is considerable literature covering backtesting of the performance and risk of socially responsible investments (SRI) compared to conventional investments. However, literature that models and examines the risk characteristics of SRI compared to conventional investments is limited. This thesis seeks to model and compare the risk of mutual funds scoring in the top 10% in terms of sustainability, based on Morningstar Portfolio Sustainability Score, to those scoring in the bottom 10%. We create one portfolio consisting of the top 10% funds and one portfolio consisting of the bottom 10%, for European and global mutual funds separately, thus in total creating 4 portfolios. The analysis is based on data of the funds' returns and Morningstar Portfolio Sustainability Scores during December 2015 to August 2019. Investigating several GARCH models, we find an ARMA-GARCH model with skewed Student's t-distribution as innovation distribution to give the best fit to the daily log-returns of each portfolio. Based on the fitted ARMA-GARCH models with skewed Student's t-distribution, we use a parametric bootstrap method to compute 95% confidence intervals for the difference in long-run volatility and value at risk (VaR) between the portfolios with high and low Morningstar Portfolio Sustainability Scores. This is performed on the portfolios of European and global funds separately. We conclude that, for global and European funds respectively, no significant difference in terms of long-run volatility and VaR is found between the funds in each of the 10% ends of the Morningstar Portfolio Sustainability Score. / Efterfrågan av hållbara investeringar har ökat kraftigt de senaste åren. Det finns många studier som genomför backtesting av hållbara investeringars avkastning och risk jämfört med konventionella investeringar. Färre studier har däremot gjorts för att modellera och jämföra investeringarnas riskegenskaper. Denna uppsats syftar till att modellera risken av hållbara investeringar genom att jämföra de 10% fonder med högst Morningstar Portfolio Sustainability Score mot de 10% fonder med lägst score. Jämförelsen görs separat för globala fonder och europeiska fonder, vilket resulterar i totalt 4 portföljer. Analysen baseras på data på fondernas avkasting och Morningstar Portfolio Sustainability Score under tidsperioden december 2015 till augusti 2019. Genom att undersöka flera olika GARCH-modeller, kommer vi fram till att en ARMA-GARCH-modell med skev t-fördelning bäst beskriver den dagliga logaritmerade avkastningen för varje portfölj. Baserat på de anpassade ARMA-GARCH-modellerna, används en "parametric bootstrap"-metod för att beräkna 95%-iga konfidensintervall för skillnaden i långsiktig volatilitet och value at risk (VaR) mellan portföljerna med högt och lågt Morningstar Portfolio Sustainability Score. Detta görs separat för de europeiska och globala fonderna. Vår slutsats är att det, för globala och europeiska fonder, inte råder en signifikant skillnad i långsiktig volatilitet eller VaR mellan fonder med högt och lågt Morningstar Portfolio Sustainability Score.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-273578
Date January 2020
CreatorsMalmgren, Erik, Zhang, Annie
PublisherKTH, Matematisk statistik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020:072

Page generated in 0.0043 seconds