Grapheme-based speech recognition systems are faster to develop, but typically do not
reach the same level of performance as phoneme-based systems. Using Afrikaans speech
recognition as a case study, we first analyse the reasons for the discrepancy in performance, before introducing a technique for improving the performance of standard grapheme-based systems. It is found that by handling a relatively small number of irregular words through phoneme-to-grapheme (P2G) transliteration – transforming the original orthography of irregular words to an ‘idealised’ orthography – grapheme-based accuracy can be improved. An analysis of speech recognition accuracy based on word categories shows that P2G transliteration succeeds in improving certain word categories in which grapheme-based systems typically perform poorly, and that the problematic categories can be identified prior to system development. An evaluation is offered of when category-based P2G transliteration is beneficial and methods to implement the technique in practice are discussed. Comparative results are obtained for a second language (Vietnamese) in order to determine whether the technique can be generalised. / MSc (Computer Science) North-West University, Vaal Triangle Campus, 2014
Identifer | oai:union.ndltd.org:NWUBOLOKA1/oai:dspace.nwu.ac.za:10394/11068 |
Date | January 2014 |
Creators | Basson, Willem Diederick |
Publisher | North-West University |
Source Sets | North-West University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0018 seconds