Return to search

Chimie interstellaire des hydrures d'azote : modélisation - observations / Interstellar nitrogen chemistry

La nouvelle fenêtre spectroscopique dans le sub-millimétrique, ouverte par l’avènement del’observatoire spatial Herschel, a permis la détection d’espèces azotées simples, les hydruresd’azote NH, NH2 et NH3, dans les enveloppes froides de proto-étoiles. Ces enveloppes sontconstituées de gaz dense et froid caractéristique des conditions physico-chimiques des nuagesmoléculaires. L’observation d’hydrures d’azote dans de tels environnements a donc permis d’apporterde nouvelles contraintes sur la chimie interstellaire de ces nuages, et nous a donné enparticulier l’occasion de ré-explorer la chimie de l’azote.L’objectif de mon travail de thèse a été d’analyser en détail cette chimie interstellaire etprincipalement la formation en phase gazeuse d’espèces polyatomiques simples : les hydruresd’azote. Dans des conditions de gaz dense et froid (n = 104 cm−3, T = 10 K), la chimie de cesderniers est initiée par une chimie lente (la conversion de N en N2 par réactions neutre-neutre),contrairement à celles de ses analogues oxygénés et carbonés. Nous nous sommes particulièrementintéressés à cette étape de la chimie de l’azote, au vu des récents travaux théoriqueset expérimentaux menés par plusieurs équipes d’experts (Bordeaux, Besançon). De plus, lesrécents travaux concernant la conversion ortho-para de l’hydrogène moléculaire et les nouveauxcalculs de rapports de branchement de spins nucléaires pour les voies de production des hydruresd’azote dans leurs configurations ortho et para, menés à l’IPAG, nous ont permis d’entreprendrele calcul auto-cohérent des différentes symétries de spin des hydrures d’azote et de l’hydrogènemoléculaire. Nous avons ainsi pu développer un nouveau réseau chimique de l’azote, bénéficiantdes taux cinétiques les plus à jour pour les réactions critiques impliquées dans la chimie deshydrures d’azote.Ce nouveau réseau est utilisé pour modéliser l’évolution temporelle des abondances desespèces azotées dans des conditions de gaz dense et froid ( 103 < n < 106 cm−3, T ≤ 50 K).Les résultats à l’état stationnaire sont comparés aux observations de NH, NH2 et NH3, dans lesenveloppes froides de proto-étoiles de faible masse, en étudiant l’influence des abondances totalesen phase gazeuse du carbone, de l’oxygène et du soufre. Nos modèles chimiques reproduisent lesabondances des hydrures d’azote observés et leurs rapports pour un rapport C/O élementaire, enphase gazeuse, de ∼ 0.8 et à condition que l’abondance totale de soufre soit déplétée d’au moinsun facteur 2. Les rapports ortho/para prédits par nos modèles, pour NH2 et NH3, respectivement∼ 2.3 et ∼ 0.7, sont compatibles avec les observations de ces derniers dans des nuages diffusfroids. Les abondances des hydrures d’azote, dans des conditions de nuages sombres, sont donccohérentes avec une synthèse purement en phase gazeuse. De plus, nos résultats soulignent lefait que NH provient d’une voie de formation différente de celle de NH2 et NH3. NH vient de larecombinaison dissociative de N2H+ alors que la formation de NH2 et NH3 est principalementdue à la recombinaison dissociative de l’ion ammonium (NH+4 ), lui même molécule fille deN+. Ainsi, NH2 et NH3 procèdent de l’échange de charge dissociatif N2 + He+, tandis que NHprovient de la réaction N2 + H+3 . / The new spectroscopic window opened by the advent of the Herschel Space Observatory,has enabled the detection of simple nitrogen species, the nitrogen hydrides NH, NH2, and NH3,in the cold envelope of protostars. These envelopes are made of dense cold gas characteristicof the physico-chemical conditions of molecular clouds. The observation of nitrogen hydrides insuch environments has brought new constraints on the interstellar chemistry of these kind ofclouds, and gives, in particular, the opportunity to revisit the chemistry of nitrogen.The aim of my thesis was to comprehensively analyse the interstellar chemistry of nitrogen,focussing on the gas-phase formation of the simplest polyatomic species, namely nitrogen hydrides.Under dense, cold gas conditions (n = 104 cm−3, T = 10 K), the chemistry of theselatter is initiated by a slow chemistry (the conversion from N to N2 with neutral-neutral reactions),in contrast to their carbonated and oxygenated analogues. We have investigated andrevisited this specific part of the nitrogen chemistry in the light of recent theoretical and experimentalwork carried out by several expert teams (Bordeaux, Besançon). In addition, recentwork about the ortho-para conversion of molecular hydrogen and new calculations of nuclearspin branching ratios for the production pathways of nitrogen hydrides in their ortho and paraconfigurations conducted at IPAG, enabled us to treat self-consistently the different spin symmetriesof the nitrogen hydrides together with the ortho and para forms of molecular hydrogen.We were able to develop a new network of chemical nitrogen in which the kinetic rates of criticalreactions involved in the nitrogen chemistry have been updated.This new network is used to model the time evolution of the nitrogen species abundancesin dense cold gas conditions (T ≤ 50 K, 103 < n < 106 cm−3). The steady-state resultsare compared to observations of NH, NH2 and NH3 towards a sample of low-mass protostars,with a special emphasis on the influence of the overall amounts of gaseous carbon, oxygen, andsulphur. Our chemical models reproduced the nitrogen hydrides abundances and their ratios fora gas-phase elemental C/O ratio of ∼ 0.8, provided that the total amount of sulphur is depletedby at least a factor of two. Our predicted ortho-to-para ratios for NH2 and NH3, ∼ 2.3 and∼ 0.7 respectively, are in good agreement with the observations towards cold diffuse clouds.Then, in dark gas conditions, the nitrogen hydride abundances are consistent with a pure gasphasesynthesis. Moreover, our results are based on the fact that NH is coming from a differentpathway than NH2 and NH3. NH is the daughter molecule of N2H+, deriving from the reactionN2+H+3 , while NH2 and NH3 proceed from NH+4 , itself daughter molecule of N+, resulting fromthe dissociative charge exchange N2 + He+.

Identiferoai:union.ndltd.org:theses.fr/2014GRENY081
Date12 December 2014
CreatorsLe Gal, Romane
ContributorsGrenoble, Hily-Blant, Pierre, Faure, Alexandre
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds