Depuis la découverte des modes asymétriques dans le sillage d'un corps simplifié d'automobile, réminiscents d'une bifurcation à bas nombre de Reynolds, se posent des questions propres au développement aérodynamique des véhicules terrestres telles que l'influence du vent latéral, de l'assiette et du rétreint d'arrière-corps couramment utilisé en phase d'optimisation. Notre travail s'attache à répondre expérimentalement à ces questions pour des géométries simplifiées mais aussi réelles. Les essais sont réalisés en soufflerie industrielle à l'échelle 2/5 pour le corps académique et en pleine échelle pour les monospaces. Nous montrons que le désalignement du véhicule par rapport à l'écoulement incident n'a pour effet que de modifier l'orientation du mode asymétrique sans en changer l'intensité. Nous construisons un modèle simple prédisant non seulement cette orientation mais aussi les conséquences sur les efforts aérodynamiques transverses. La contribution de l'instabilité sur les coefficients aérodynamiques de portance ou d'effort latéral est de l'ordre de 0,02 indépendamment du vent de travers et de l'assiette du véhicule. Les rétreints d'arrière-corps affectent également la dynamique du sillage et son orientation, mais l'instabilité n'est jamais supprimée. Ces résultats sont retrouvés pour des véhicules réels de type monospace dont le sillage est donc également soumis au même mode asymétrique, révélé sans ambigüité par des expériences de sensibilité en assiette. Nos résultats indiquent que, pour tous les véhicules considérés, le mode asymétrique de sillage est systématiquement présent dans l'enveloppe de conduite. Le contrôle ou la suppression de ce mode devrait offrir de nouvelles perspectives d'optimisation des véhicules à culot droit de type monospaces ou SUV. / Since the recent discovery of asymmetric modes in the wake of a simplified vehicle geometry, reminiscent from a bifurcation at low Reynolds numbers, some questions related to the aerodynamic development of ground vehicles such as the influence of lateral wind, pitch and afterbody boat-tail classically used during shape optimization remain unanswered. Our work is devoted to assess those questions experimentally for simplified but also real geometries. The tests are conducted in an industrial wind-tunnel, at the 2/5-scale for the academic body and at the full scale for the minivans. We show that the vehicle's misalignment only modifies the asymmetric mode's orientation without affecting its intensity. We build a model predicting not only this orientation but also the consequences on the cross-flow aerodynamic loading. The contribution of the instability to the lift or side force coefficients is of the order of 0,02 independently of lateral wind or of the vehicle's pitch. Afterbody boat-tails also impact the wake dynamics and its orientation but the instability is never suppressed. These results are retrieved for real vehicles such as minivans, whose wake is then subjected to the same asymmetric mode as well, revealed unambiguously with pitch sensitivity experiments. Our results indicate that, for all considered vehicles, the asymmetric wake mode is systematically present in the driving envelope. The control or the suppression of this mode should offer new optimization's perspectives for blunt based vehicles such as minivans or SUVs.
Identifer | oai:union.ndltd.org:theses.fr/2018SACLY010 |
Date | 05 October 2018 |
Creators | Bonnavion, Guillaume |
Contributors | Université Paris-Saclay (ComUE), Cadot, Olivier, Sipp, Denis |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | English |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0016 seconds