Return to search

Design of new Heusler-type thermoelectric materials : application to Fe₂VAl / Développement de nouveaux matériaux thermoélectriques de type Heusler : application à Fe₂VAl

La demande d'une énergie durable et verte est très importante pour les gouvernements et les populations. De par l'augmentation rapide de la population humaine et l'industrialisation à l'échelle mondiale, c’est devenu un enjeu majeur. Une alternative à l’utilisation des combustibles fossiles qui peut être envisagée est l’utilisation, lorsque c’est possible, de dispositifs thermoélectriques. Ces derniers peuvent convertir la chaleur perdue, provenant de diverses sources, en énergie électrique. Cependant, les dispositifs thermoélectriques actuels sont limités en raison de leur faible efficacité, de la nature toxique des matériaux utilisés et de leurs coûts élevés. Le défi actuel dans ce domaine de recherche est de concevoir des matériaux hautement efficaces, respectueux de l'environnement et disponibles à des prix moins élevés. Parmi les matériaux thermoélectriques prometteurs pour la génération d'énergie, le composé Fe2VAl (matériau de la famille des composés Heusler), semble prometteur car il se comporte comme un semi-conducteur sur une large gamme de température et ce jusqu'à 1173 K. Néanmoins, la capacité thermoélectrique de ce composé est compromise par sa conductivité thermique élevée. L'objectif de cette thèse était de trouver de nouvelles stratégies afin d’améliorer l'efficacité thermoélectrique de Fe2VAll'aide de calculs ab initio et d'études expérimentales. Les calculs basés sur les premiers principes ont été effectués en utilisant le code informatique VASP (Vienna Ab-initio Simulation Package) basé sur la théorie de la fonctionnelle densité (DFT) avec comme but d’étudier la structure électronique du composé Fe2VAl. L'énergie de formation des défauts intrinsèques tels que les lacunes, les anti-sites et les défauts interstitiels, a été déterminée. Nous avons montré que la formation des défauts de type anti-sites est la plus probable. À l'aide du code BoltzTraP, basé sur la théorie du transport de Boltzmann dans l’approximation du temps de relaxation constant, les propriétés de transport électronique de Fe2VAl pur et contenant les défauts les plus favorables ont été calculées. La présence des différents défauts au sein du réseau n’entraine pas d'amélioration notable du coefficient de Seebeck. La conductivité thermique de réseau de Fe2VAl, à la fois sous forme pure et en présence des défauts d’anti-site les plus stables (AlV) a été analysée en utilisant les codes ShengBTE et almaBTE récemment développés. Uneamélioration significative du facteur de mérite (appelé ZT) est alors trouvée en présence de défauts de type anti-sites. Des composés Fe2VAl nanostructurés ont été synthétisés en parallèle par mécanosynthèse, autrement appelé broyage hauteénergie. Les éléments constitutifs sont broyés en ajoutant différentes proportions de chlorure de sodium afin d'obtenir des échantillons poreux, NaCl servant d’agent structurant. Les poudres sont ensuite lavées soigneusement pour éliminer les traces de NaCl et consolidées à l'aide de la technique de frittage flash SPS. L’utilisation de cette nouvelle voie pour structurer et introduire de la porosité dans les échantillons afin de diminuer la conductivité thermique est assez concluante. Nous obtenons une porosité d'environ 15 à 20% en présence de NaCl (contre environ 5% sans sel). L'efficacité thermoélectrique estremarquablement augmentée pour ces échantillons poreux. Néanmoins, les échantillons broyés contenant 15% de porosité présentent des valeurs de ZT plus élevées que les échantillons à plus forte porosité. Ainsi, il est crucial de contrôler et d’optimiser la porosité pour obtenir une plus grande efficacité thermoélectrique. Notre étude montre ainsi clairement que la performance thermoélectrique peut être améliorée en modifiant la stœchiométrie et la morphologie des échantillons.Mots clés : Fe2VAl, matériaux, composés Heusler, thermoélectricité, calculs ab initio, enthalpie de formation, défauts, mécanosynthèse, porosité. / The requirement of a sustainable and green energy is increasing with the rapid rise in human population and industrialization. The traditional way of utilizing fossil fuels can be replaced by thermoelectric devices which can convert thewasted heat from various sources into electrical energy. However, the present day thermoelectric devices are limited due to their low efficiency, toxic nature and high costs. The current challenge in this field is to design highly efficient thermoelectric materials which are environment friendly and available at a reasonable price. Among promising thermoelectric materials forpower generation, the Heusler-type Fe2VAl attained a great attention due to its semiconducting nature over a wide temperature range up to 1173 K. Nonetheless, the thermoelectric use of this compound is jeopardized by its high thermalconductivity. The aim of this thesis was to find new strategies in enhancing the thermoelectric efficiency of Fe2VAl with the aid of ab initio calculations and experimental studies. First principles calculations have been performed using the computer code VASP (Vienna ab-initio Simulation Package) based on the Density Functional Theory (DFT) to study the electronic structure of the full Heusler compound Fe2VAl. The formation energy of the intrinsic point defects such as vacancies, antisites and interstitials is analyzed and antisite defects are found to be the most probable defects. With the aid of the BoltzTraP code based on the Boltzmann transport theory within the constant relaxation time approach, the electronic transport properties of Fe2VAl taking into account the effect of the most favorable defects have been calculated. The presenceof defects does not lead to a significant improvement of the Seebeck coefficient. The lattice thermal conductivities of Fe2VAl, both in pristine form and in presence of its most stable antisite defect (Al V) have been analyzed by ShengBTE and the recently developed code almaBTE. A significant enhancement of the figure of merit (also known as ZT) is found with the presence of antisite defects. Nanostructured Fe2VAl compounds have been synthesized in parallel by the ball milling technique. The constituent elements have been milled together with different contents of NaCl in order to obtain porous samples. The powders have been later washed thoroughly to remove the traces of NaCl. All the powders have been consolidated using Spark Plasma Sintering (SPS). This novel idea is quite successful in achieving a porosity of around 15–20% with NaCl whereas a porosity of ~5 % is found in the case of the samples without NaCl. The thermoelectric efficiency is enhanced remarkably in the porous samples. Nevertheless, the samples milled with 15 % porosity exhibit higher ZT valuesthan the samples with 20 % porosity. Thus, it is crucial to confine and control the porosity to obtain high thermoelectric efficiencies. Our study thus clearly shows that the thermoelectric performance can be enhanced by off-stoichiometry and the modification of the morphology of the samples.Key words: Fe2VAl, materials, Heusler compounds, thermoelectricity, ab initio calculations, formation enthalpy, defects, ball milling,porosity.

Identiferoai:union.ndltd.org:theses.fr/2017MONTT170
Date24 November 2017
CreatorsBandaru, Subrahmanyam
ContributorsMontpellier, Jund, Philippe
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0032 seconds