Reine Untergruppen von vollständig zerlegbaren torsionsfreien abelschen Gruppen werden Butlergruppen genannt. Eine solche Gruppe läßt sich als endliche Summe von rationalen Rang-1-Gruppen darstellen. Eine solche Darstellung ist nicht eindeutig. Daher werden Methoden entwickelt, die zu einer Darstellung mit reinen Summanden führen. Weiter kann aus dieser Darstellung sowohl die kritische Typenmenge als auch die Typuntergruppen direkt abgelesen werden. Dies vereinfacht die Behandlung von Butlergruppen mit dem Computer und gestattet darüberhinaus eine elegantere Darstellung. / A pure subgroup of a completely decomposable torsion free abelian group is called Butler group. These groups can be represented as sum of rational subgroups. A representation with pure summands is developed, such that the critical typeset can be read off and every type-subgroup can be represented as sum of these summands.
Identifer | oai:union.ndltd.org:uni-wuerzburg.de/oai:opus.bibliothek.uni-wuerzburg.de:508 |
Date | January 2003 |
Creators | Fleischmann, Peter |
Source Sets | University of Würzburg |
Language | deu |
Detected Language | German |
Type | doctoralthesis, doc-type:doctoralThesis |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0025 seconds