The development of compact imaging systems capable of transmitting high-resolution images in real-time while covering a wide field-of-view (FOV) is critical in a variety of military and civilian applications: surveillance, threat detection, target acquisition, tracking, remote operation of unmanned vehicles, etc. Recently, optical foveated imaging using liquid crystal (LC) spatial light modulators (SLM) has received considerable attention as a potential approach to reducing size and complexity in fast wide-angle lenses. The fundamental concept behind optical foveated imaging is reducing the number of elements in a fast wide-angle lens by placing a phase SLM at the pupil stop to dynamically compensate aberrations left uncorrected by the optical design. In the recent years, considerable research and development has been conducted in the field of optical foveated imaging based on the LC SLM technology, and several foveated optical systems (FOS) prototypes have been built. However, most research has been focused so far on the experimental demonstration of the basic concept using off the shelf components, without much concern for the practicality or the optical performance of the systems. Published results quantify only the aberration correction capabilities of the FOS, often claiming diffraction limited performance at the region of interest (ROI). However, these results have continually overlooked diffraction effects on the zero-order efficiency and the image quality. The research work presented in this dissertation covers the methods and results of a detailed theoretical research study on the diffraction analysis, image quality, design, and optimization of fast wide-angle FOSs based on the current transmissive LC SLM technology. The amplitude and phase diffraction effects caused by the pixelated aperture of the SLM are explained and quantified, revealing fundamental limitations imposed by the current transmissive LC SLM technology. As a part of this study, five different fast wide-angle lens designs that can be used to build practical FOSs were developed, revealing additional challenges specific to the optical design of fast wide-angle systems, such as controlling the relative illumination, distortion, and distribution of aberrations across a wide FOV. One of the lens design examples was chosen as a study case to demonstrate the design, analysis, and optimization of a practical wide-angle FOS based on the current state-of-the-art transmissive LC SLM technology. The effects of fabrication and assembly tolerances on the image quality of fast wide-angle FOSs were also investigated, revealing the sensitivity of these fast well-corrected optical systems to manufacturing errors. The theoretical study presented in this dissertation sets fundamental analysis, design, and optimization guidelines for future developments in fast wide-angle FOSs based on transmissive SLM devices.
Identifer | oai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-4971 |
Date | 01 January 2009 |
Creators | Curatu, George |
Publisher | STARS |
Source Sets | University of Central Florida |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Page generated in 0.002 seconds