Spelling suggestions: "subject:"foveal imaging""
1 |
Liquid Crystal Active Optics for Military Imaging SystemsBagwell, Brett Edward January 2006 (has links)
There are inherent tradeoffs in size, weight, and adaptability for many military imaging systems. In some cases, active optical devices provide new alternatives external to the traditional trade-space. Applications of interest include remote wide-area surveillance, tactical use of high altitude and space-based sensors, remote navigation of unmanned ground and air vehicles, and night vision systems.My goal is to demonstrate that by augmenting or replacing static dioptric, catatropic, or catadioptric optical designs, mechanical complexity can be reduced while either maintaining or increasing performance in three areas:(1). Spectral Resolution(2). Spatial Resolution(3). MagnificationI present here three different imaging systems to showcase these capabilities.
|
2 |
A Multi-Resolution Foveated LaparoscopeQin, Yi January 2015 (has links)
Laparoscopic surgery or minimally invasive surgery has great advantages compared with the conventional open surgery, such as reduced pain, shorter recovery time and lower infection rate. It has become a standard clinical procedure for cholecystectomy, appendectomy and splenectomy. The state-of-the-art laparoscopic technologies suffer from several significant limitations, one of which is the tradeoff of the limited instantaneous field of view (FOV) for high spatial resolution versus the wide FOV for situational awareness but with diminished spatial resolution. Standard laparoscopes lack the ability to acquire both wide-angle and high-resolution images simultaneously through a single scope. During the surgery, a trained assistant is required to manipulate the laparoscope. The practice of frequently maneuvering the laparoscope by a trained assistant can lead to poor or awkward ergonomic scenarios. This type of ergonomic conflicts imposes inherent challenges to laparoscopic procedures, and it is further aggravated with the introduction of single port access (SPA) techniques to laparoscopic surgery. SPA uses one combined surgical port for all instruments instead of using multiple ports in the abdominal wall. The grouping of ports raises a number of challenges, including the tunnel vision due to the in-line arrangement of instruments, poor triangulation of instruments, and the instrument collision due to the close proximity to other surgical devices. A multi-resolution foveated laparoscope (MRFL) was proposed to address those limitations of the current laparoscopic surgery. The MRFL is able to simultaneously capture a wide-angle view for situational awareness and a high-resolution zoomed-in view for fine details. The high-resolution view can be scanned and registered anywhere within the wide-angle view, enabled by a 2D optical scanning mechanism. In addition, the high-resolution probe has optical zoom and autofocus capabilities, so that the field coverage can be dynamically varied while keep the same focus distance as the wide-angle probe. Moreover, the MRFL has a large working distance compared with the standard laparoscopes, the wide-angle probe has more than 8x field coverage than a standard laparoscope. On the other hand, the high-resolution probe has 3x spatial resolution than a standard one. These versatile capabilities are anticipated to have significant impacts on the diagnostic, clinical and technical aspects of minimally invasive surgery. In this dissertation, the development of the multi-resolution foveated laparoscope was discussed in detail. Starting from the refinement of the 1st order specifications, system configurations, and initial prototype demonstration, a customized dual-view MRFL system with fixed optical magnifications was developed and demonstrated. After the in-vivo test of the first generation prototype of the MRFL, further improvement was made on the high-resolution probe by adding an optical zoom and auto-focusing capability. The optical design, implementation and experimental validation of the MRFL prototypes were presented and discussed in detail.
|
3 |
Analysis And Design Of Wide-angle Foveated Optical SystemsCuratu, George 01 January 2009 (has links)
The development of compact imaging systems capable of transmitting high-resolution images in real-time while covering a wide field-of-view (FOV) is critical in a variety of military and civilian applications: surveillance, threat detection, target acquisition, tracking, remote operation of unmanned vehicles, etc. Recently, optical foveated imaging using liquid crystal (LC) spatial light modulators (SLM) has received considerable attention as a potential approach to reducing size and complexity in fast wide-angle lenses. The fundamental concept behind optical foveated imaging is reducing the number of elements in a fast wide-angle lens by placing a phase SLM at the pupil stop to dynamically compensate aberrations left uncorrected by the optical design. In the recent years, considerable research and development has been conducted in the field of optical foveated imaging based on the LC SLM technology, and several foveated optical systems (FOS) prototypes have been built. However, most research has been focused so far on the experimental demonstration of the basic concept using off the shelf components, without much concern for the practicality or the optical performance of the systems. Published results quantify only the aberration correction capabilities of the FOS, often claiming diffraction limited performance at the region of interest (ROI). However, these results have continually overlooked diffraction effects on the zero-order efficiency and the image quality. The research work presented in this dissertation covers the methods and results of a detailed theoretical research study on the diffraction analysis, image quality, design, and optimization of fast wide-angle FOSs based on the current transmissive LC SLM technology. The amplitude and phase diffraction effects caused by the pixelated aperture of the SLM are explained and quantified, revealing fundamental limitations imposed by the current transmissive LC SLM technology. As a part of this study, five different fast wide-angle lens designs that can be used to build practical FOSs were developed, revealing additional challenges specific to the optical design of fast wide-angle systems, such as controlling the relative illumination, distortion, and distribution of aberrations across a wide FOV. One of the lens design examples was chosen as a study case to demonstrate the design, analysis, and optimization of a practical wide-angle FOS based on the current state-of-the-art transmissive LC SLM technology. The effects of fabrication and assembly tolerances on the image quality of fast wide-angle FOSs were also investigated, revealing the sensitivity of these fast well-corrected optical systems to manufacturing errors. The theoretical study presented in this dissertation sets fundamental analysis, design, and optimization guidelines for future developments in fast wide-angle FOSs based on transmissive SLM devices.
|
Page generated in 0.0576 seconds