Return to search

Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel sibirischer Flusssysteme / Determination of hydrological mass variations from GRACE data for Siberian river systems

Aus Beobachtungsdaten der Satellitenmission GRACE (Gravity Recovery and Climate Experiment) können Variationen des Erdschwerefeldes auf großen räumlichen Skalen mit hoher Genauigkeit abgeleitet werden. Die Variationen auf zeitlichen Skalen von mehreren Tagen bis Wochen und räumlichen Skalen von wenigen hundert Kilometern sind insbesondere auf Änderungen der kontinentalen Wassermassen zurückzuführen. Die vorliegende Promotionsarbeit beschäftigt sich mit der Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel der vier größten sibirischen Flusseinzugsgebiete Ob, Jenissei, Lena und Kolyma. Darauf aufbauend sollen in Kombination mit atmosphärischen Daten der NCEP-Reanalyse Süßwassereinträge in den Arktischen Ozean abgeleitet werden.
Die Süßwassereinträge beeinflussen nachhaltig den Salzgehalt und damit das ozeanographische Regime des Arktischen Ozeans, welcher wiederum einen Einfluss auf die globale thermohaline Zirkulation hat. Da die großen Strömungen des Weltozeans einen grundlegenden Faktor des globalen Klimageschehens darstellen, sind die Änderungen des Süßwassereintrages ein wichtiger Aspekt hinsichtlich prognostizierter Klimatrends. Der Abfluss kann an ausgewählten Messpunkten mit einer hohen zeitlichen Auflösung beobachtet werden. Die Datenreihen weisen jedoch immer wieder Lücken auf und die bodengebundenen Messungen sind oft schwierig und kostenintensiv. Messmethoden, die unabhängig vom Zugang ins Messgebiet sind, können einen großen Fortschritt bei der Beobachtung sich ändernder Massen und Süßwasserflüsse leisten und damit einen Beitrag für ein besseres Verständnis gekoppelter komplexer Prozesse der Arktis liefern.
Da die Fehlerstruktur der GRACE-Daten komplex und bis heute nicht vollständig verstanden ist, erfolgt zunächst eine Untersuchung des GRACE-Fehlerhaushaltes. Zudem werden die Fehlereffekte aufgrund des begrenzten räumlichen Spektrums und damit einhergehender Leck-Effekte auf Ebene von Gebietsmittelwerten analysiert und Lösungsvorschläge diskutiert. Dabei sind folgende Aspekte von Bedeutung: Erweiterung der GRACE-Datenreihe um geeigente Terme ersten Grades und Abschätzung von Leck-Effekten, verursacht durch das begrenzte Spektrum der Kugelfunktionsentwicklung. Leck-Effekte aufgrund ozeanischer Signalanteile sind bzgl. der Einzugsgebiete sibirischer Flusssysteme klein (< 1%), wohingegen Leck-Effekte aufgrund kontinentaler Signalanteile je nach Gebietsgröße relative Fehler von 8-17% nach sich ziehen. Die größten Fehlereffekte resultieren jedoch aus den Koeffizienten hoher Grade. Die Filterung der GRACE-Daten ermöglicht die Glättung fehlerbehafterer Signalanteile. Neben den in der Literatur gängigen Filtern wurde im Rahmen der Arbeit ein Kombinationsfilter entwickelt, welches auf Basis von räumlichen Vorinformationen aus Hydrologiemodellen signifikante Signalstrukturen in den GRACE-Datenreihen detektiert. Somit muss lediglich ein Restsignal mittels Filterung gedämpft werden. Mit dem Kombinationsfilter können sowohl feinere Signalstrukturen als auch größere Signalamplituden auf Land erhalten werden. Im Vergleich zu reinen Filteranwendungen werden hier Gesamtsignalstärke, Amplitude und Phase des jährlichen Signals gut repräsentiert. Darauf aufbauend lassen sich, in Kombination mit atmosphärischen Daten, Abflüsse für die sibirischen Flusssysteme aus GRACE-Wasserspeichervariationen ableiten. Die Validierung der berechneten Abflüsse anhand beobachteter Abflüsse zeigt eine hohe Übereinstimmung von bis zu 83%. Eine Gegenüberstellung des berechneten Abflusses der Lena mit Wasserstandsmessungen im Mündungsbereich zeigt zudem einen Zusammenhang zwischen dem maximalen Abfluss im Frühjahr und einer Zunahme des Wasserstandes in der Laptewsee. / The satellite mission GRACE (Gravity Recovery and Climate Experiment) observes the earth's gravity field on temporal scales of a few days to several weeks and spatial scales of a few hundred kilometers with high accuracy. A large part of the variations of the gravity field originate from hydrological mass changes on the continents. The dissertation discusses the determination of hydrological mass variations from GRACE for the Siberian water systems of the rivers Ob, Yenisey, Lena and Kolyma. The mass variations from GRACE data are combined with atmospheric data of the NCEP reanalysis to calculate the freshwater fluxes in the Arctic Ocean.
The freshwater fluxes strongly influences the salinity and the oceanographic regime of the Arctic Ocean. In turn, the Arctic Ocean controls the global thermohaline circulation which is very important for the global climate. Because these large currents of the ocean influence the global climate, the changes of the freshwater fluxes in the Arctic Ocean are an important factor for the global climate change. The runoff can be measured pointwise with high temporal resolution, but measurements in the high latitudes are difficulty and expensive. Independent methods to measure the mass changes in the Arctic can help to determine the freshwater fluxes on large spatial scales, and contribute to understand the coupled and complex processes of the Arctic.
Until present, the complex error structure of the GRACE data are not fully understand. The dissertation examines the errors and analysizes the leakage caused by the limited spectrum of the Stokes coefficients. A proposal for a solution will be discussed. The following steps are important: Expanding the GRACE data with adequate terms of degree one; Valuation of leakage errors because of the limited spectrum. Leakage due to oceanographic signals of the Arctic Ocean are small (< 1%). Leakage errors due to signals on land produces relative errors of basin averages of 8-17%. Beyond that, the largest errors are caused by the coefficients of higher degree. Filtering is an effective method to damp the error signals. In addition to the common filters described in the literature, a filter method, called composite filter, was created. Significant structures from hydrological models can be deteceted in the GRACE data without any other filtering. Only the residual signals should be filtered by using one of the common filters. In comparison to the common filters, the composite filter represents the signal strength, the signal structures, the amplitude and the phase of the saisonal signal on the continents much better.
Combining hydrological mass variations from GRACE data with atmospheric data (for example the NCEP reanalysis) the runoff of the four Siberian river systems can be calculated. The validation of the calculated runoff using observations leads to a good agreement (83% for Yenisey and Lena). Furthermore, it is possible to combine the runoff of a river system with measurements of water level and salinity in the Arctic Ocean. The high runoff of the Lena river system in spring is visible in the water level changes in the Laptev sea.

Identiferoai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:14-qucosa-103852
Date29 January 2013
CreatorsScheller, Marita
ContributorsTechnische Universität Dresden, Fakultät Umweltwissenschaften, Prof. Dr.-Ing. habil. Reinhard Dietrich, Prof. Dr.-Ing. habil. Reinhard Dietrich, Prof. Dr.-Ing. Matthias Becker
PublisherSaechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden
Source SetsHochschulschriftenserver (HSSS) der SLUB Dresden
Languagedeu
Detected LanguageGerman
Typedoc-type:doctoralThesis
Formatapplication/pdf

Page generated in 0.0035 seconds