• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physical Properties of Arctic and Antarctic Aerosol Particles and Cloud Condensation Nuclei

Herenz, Paul 10 October 2019 (has links)
Aerosol Partikel interagieren mit solarer und terrestrischer Strahlung durch Absorption und Streuung. Zusätzlich bilden und modifizieren sie die Eigenschaften von Wolken da sie das Potential besitzen als Wolkenkondensationskeim (CCN) fungieren zu können und stellen somit eine wichtige Komponente im Klimasystem dar. Die Eigenschaften von Partikeln und CCN müssen genaustens bekannt sein um deren Einfluss in Klima- und Strahlungsmodellen akurat berücksichtigen zu können. Ziel dieser Arbeit ist die Charakterisierung der Partikeleigenschaften in Regionen, welche das Klima maßgeblich beeinflussen, wie die Arktis und die Antarktis. Im Rahmen dieser Arbeit wurden 2 Datensätze aufgenommen, welche helfen das Verständnis über Partikel und CCN im Frühjar und Sommer in der Arktis und Antarktis zu verbessern. Es wurden jeweils die Gesamt- und die CCN-Anzahlkonzentration (NCN, NCCN), die Anzahlgrößenverteilung (PNSD) und der Hygroskopizitätsparameter (k) der Partikel bestimmt. Die Herkunft der vermessenen Partikel wurde mit Rückwärtstrajektorien ermittelt sowie weitere Analysen bezüglich der Verweilzeiten durchgeführt. Beide Datensätze zeigen, dass eine starke Abhängigkeit der Partikel- und CCN-Eigenschaften vom Luftmassenursprung vorliegt. Zeigen arktische PNSDs nur eine Akkumulationsmode, konnte diese auf gealtertes Aerosol mit einem eurasischen Ursprung zurückgeführt werden. Kommt eine zweite Mode mit kleineren Partikeln hinzu, wurde der Nord-Pazifische Raum als Ursprung bestimmt. In der Antarktis wurde besonders für NCN und NCCN eine starke Abhängigkeit vom Luftmassenursprung gefunden. Dabei konnten mit der Anwendung des Dispersionsmodells NAME Antarktische Hintergrundkonzentrationen ermittelt werden. Weiterhin wurde gefunden, dass Antarktische Aerosolpartikel mit einem k von 1 hygroscopischer als das Arktische ist, für welches ein k von 0,19 bestimmt wurde. Zusätzlich durchgeführte Flugzeugmessungen über Tuktoyaktuk (Arktis) zeigen, dass die Messungen am Boden auch repräsentativ für die Grenzschicht sind. Die Schichten über der Grenzschicht scheinen jedoch von dieser entkoppelt zu sein und es wird vermutet, dass der Ursprung der Partikel in größeren Höhen in niedrigeren geographischen Breiten liegt.:Contents List of Abbreviations iii List of Symbols v 1. Introduction 1 2. Experimental 9 2.1. Measured Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Total Particle Number Concentration . . . . . . . . . . . . . . . 9 2.1.2. Particle Number Size Distribution . . . . . . . . . . . . . . . . . 10 2.1.3. Total Concentration of Cloud Condensation Nuclei . . . . . . . . 15 2.2. Determination of the CCN hygroscopicity . . . . . . . . . . . . . . . . . 16 2.2.1. Köhler theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. The hygroscopicity parameter k and the critical diameter dcrit . . 18 2.3. Determination of the Air Mass Origin . . . . . . . . . . . . . . . . . . . 20 2.3.1. The NAME Dispersion Model . . . . . . . . . . . . . . . . . . . 20 2.3.2. Potential Source Contribution Function . . . . . . . . . . . . . . 22 3. Results and Discussion 25 3.1. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring-Summer transition in May 2014 . . 25 3.1.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Overview of NCN, NCCN and PNSD data for the entire measurement period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3. Identification of air mass origins and potential source regions . . . 32 3.1.4. PNSD of the three periods . . . . . . . . . . . . . . . . . . . . . 35 3.1.5. Critical diameter dcrit and hygroscopicity parameter k . . . . . . 38 3.1.6. Comparison of height resolved airborne and ground based PNSDs 41 3.2. Measurements of aerosol and CCN properties at the Princess Elisabeth Antarctica Research Station during three austral summers . . . . . . . . . 45 3.2.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2. Total Particle and CCN number concentrations and regional analysis of the NAME model footprints . . . . . . . . . . . . . . . . 50 3.2.3. PSCF results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4. Hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4. Summary, Conclusions and Outlook 65 A. Appendix 71 A.1. SS calibration of the CCNC . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2. Error Analysis with Monte Carlo Simulation . . . . . . . . . . . . . . . . 73 B List of Figures vii C List of Tables viii Bibliography xi / Atmospheric aerosol particles interact with solar and terrestrial radiation by absorption and scattering. Further, they have the potential to act as cloud condensation nuclei (CCN) and to form and modify the radiative properties of clouds and thus are an important component in the Earth’s climate system. An accurate knowledge about the aerosol particle and CCN properties is very important for accurate climate and radiation models. The objective of this thesis is the characterization of aerosol particles in regions that are key regulators of the Earth’s climate. The Arctic and the Antarctic are such regions. Hence, in the framework of this doctoral thesis two data sets were recorded, that help gaining further knowledge about the spring and summer time aerosol particles and CCN in the Arctic and Antarctic region. For both, the Arctic and the Antarctic aerosol population, the CCN and the total particle number concentration (NCCN, NCN), the particle number size distribution (PNSD) and the hygroscopicity parameter k were determined. The history of the measured air masses was explored using back trajectories and residence time analysis. For both examined regions, a strong influence of the air mass origin on the aerosol particle and CCN properties was found. The PNSDs measured in the Arctic were found to be mono-modal showing an accumulation mode which most likely contains well aged particles that have an Eurasian origin. Bi-modal PNSDs with an additional mode of smaller particles were found to originate from the Northern Pacific. In the Antarctic the air mass origin was found to significantly influence NCCN and NCN. With the application of the NAME dispersion model Antarctic continental background concentrations could be determined. With k values of 1 the Antarctic aerosol was found to be much more hygroscopic than the Arctic aerosol, for which a k of 0.19 was determined. Additional Arctic aircraft measurements show that ground based measurements are representative for the Arctic boundary layer. However particles above the boundary layer seem to be decoupled from lower layers and were believed to be advected from lower latitudes in different height layers and mixed down in the lower Arctic troposphere.:Contents List of Abbreviations iii List of Symbols v 1. Introduction 1 2. Experimental 9 2.1. Measured Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.1.1. Total Particle Number Concentration . . . . . . . . . . . . . . . 9 2.1.2. Particle Number Size Distribution . . . . . . . . . . . . . . . . . 10 2.1.3. Total Concentration of Cloud Condensation Nuclei . . . . . . . . 15 2.2. Determination of the CCN hygroscopicity . . . . . . . . . . . . . . . . . 16 2.2.1. Köhler theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.2.2. The hygroscopicity parameter k and the critical diameter dcrit . . 18 2.3. Determination of the Air Mass Origin . . . . . . . . . . . . . . . . . . . 20 2.3.1. The NAME Dispersion Model . . . . . . . . . . . . . . . . . . . 20 2.3.2. Potential Source Contribution Function . . . . . . . . . . . . . . 22 3. Results and Discussion 25 3.1. Measurements of aerosol and CCN properties in the Mackenzie River delta (Canadian Arctic) during Spring-Summer transition in May 2014 . . 25 3.1.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 25 3.1.2. Overview of NCN, NCCN and PNSD data for the entire measurement period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.1.3. Identification of air mass origins and potential source regions . . . 32 3.1.4. PNSD of the three periods . . . . . . . . . . . . . . . . . . . . . 35 3.1.5. Critical diameter dcrit and hygroscopicity parameter k . . . . . . 38 3.1.6. Comparison of height resolved airborne and ground based PNSDs 41 3.2. Measurements of aerosol and CCN properties at the Princess Elisabeth Antarctica Research Station during three austral summers . . . . . . . . . 45 3.2.1. Campaign overview . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2. Total Particle and CCN number concentrations and regional analysis of the NAME model footprints . . . . . . . . . . . . . . . . 50 3.2.3. PSCF results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.2.4. Hygroscopicity . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 4. Summary, Conclusions and Outlook 65 A. Appendix 71 A.1. SS calibration of the CCNC . . . . . . . . . . . . . . . . . . . . . . . . . 71 A.2. Error Analysis with Monte Carlo Simulation . . . . . . . . . . . . . . . . 73 B List of Figures vii C List of Tables viii Bibliography xi
2

Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel sibirischer Flusssysteme / Determination of hydrological mass variations from GRACE data for Siberian river systems

Scheller, Marita 29 January 2013 (has links) (PDF)
Aus Beobachtungsdaten der Satellitenmission GRACE (Gravity Recovery and Climate Experiment) können Variationen des Erdschwerefeldes auf großen räumlichen Skalen mit hoher Genauigkeit abgeleitet werden. Die Variationen auf zeitlichen Skalen von mehreren Tagen bis Wochen und räumlichen Skalen von wenigen hundert Kilometern sind insbesondere auf Änderungen der kontinentalen Wassermassen zurückzuführen. Die vorliegende Promotionsarbeit beschäftigt sich mit der Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel der vier größten sibirischen Flusseinzugsgebiete Ob, Jenissei, Lena und Kolyma. Darauf aufbauend sollen in Kombination mit atmosphärischen Daten der NCEP-Reanalyse Süßwassereinträge in den Arktischen Ozean abgeleitet werden. Die Süßwassereinträge beeinflussen nachhaltig den Salzgehalt und damit das ozeanographische Regime des Arktischen Ozeans, welcher wiederum einen Einfluss auf die globale thermohaline Zirkulation hat. Da die großen Strömungen des Weltozeans einen grundlegenden Faktor des globalen Klimageschehens darstellen, sind die Änderungen des Süßwassereintrages ein wichtiger Aspekt hinsichtlich prognostizierter Klimatrends. Der Abfluss kann an ausgewählten Messpunkten mit einer hohen zeitlichen Auflösung beobachtet werden. Die Datenreihen weisen jedoch immer wieder Lücken auf und die bodengebundenen Messungen sind oft schwierig und kostenintensiv. Messmethoden, die unabhängig vom Zugang ins Messgebiet sind, können einen großen Fortschritt bei der Beobachtung sich ändernder Massen und Süßwasserflüsse leisten und damit einen Beitrag für ein besseres Verständnis gekoppelter komplexer Prozesse der Arktis liefern. Da die Fehlerstruktur der GRACE-Daten komplex und bis heute nicht vollständig verstanden ist, erfolgt zunächst eine Untersuchung des GRACE-Fehlerhaushaltes. Zudem werden die Fehlereffekte aufgrund des begrenzten räumlichen Spektrums und damit einhergehender Leck-Effekte auf Ebene von Gebietsmittelwerten analysiert und Lösungsvorschläge diskutiert. Dabei sind folgende Aspekte von Bedeutung: Erweiterung der GRACE-Datenreihe um geeigente Terme ersten Grades und Abschätzung von Leck-Effekten, verursacht durch das begrenzte Spektrum der Kugelfunktionsentwicklung. Leck-Effekte aufgrund ozeanischer Signalanteile sind bzgl. der Einzugsgebiete sibirischer Flusssysteme klein (< 1%), wohingegen Leck-Effekte aufgrund kontinentaler Signalanteile je nach Gebietsgröße relative Fehler von 8-17% nach sich ziehen. Die größten Fehlereffekte resultieren jedoch aus den Koeffizienten hoher Grade. Die Filterung der GRACE-Daten ermöglicht die Glättung fehlerbehafterer Signalanteile. Neben den in der Literatur gängigen Filtern wurde im Rahmen der Arbeit ein Kombinationsfilter entwickelt, welches auf Basis von räumlichen Vorinformationen aus Hydrologiemodellen signifikante Signalstrukturen in den GRACE-Datenreihen detektiert. Somit muss lediglich ein Restsignal mittels Filterung gedämpft werden. Mit dem Kombinationsfilter können sowohl feinere Signalstrukturen als auch größere Signalamplituden auf Land erhalten werden. Im Vergleich zu reinen Filteranwendungen werden hier Gesamtsignalstärke, Amplitude und Phase des jährlichen Signals gut repräsentiert. Darauf aufbauend lassen sich, in Kombination mit atmosphärischen Daten, Abflüsse für die sibirischen Flusssysteme aus GRACE-Wasserspeichervariationen ableiten. Die Validierung der berechneten Abflüsse anhand beobachteter Abflüsse zeigt eine hohe Übereinstimmung von bis zu 83%. Eine Gegenüberstellung des berechneten Abflusses der Lena mit Wasserstandsmessungen im Mündungsbereich zeigt zudem einen Zusammenhang zwischen dem maximalen Abfluss im Frühjahr und einer Zunahme des Wasserstandes in der Laptewsee. / The satellite mission GRACE (Gravity Recovery and Climate Experiment) observes the earth's gravity field on temporal scales of a few days to several weeks and spatial scales of a few hundred kilometers with high accuracy. A large part of the variations of the gravity field originate from hydrological mass changes on the continents. The dissertation discusses the determination of hydrological mass variations from GRACE for the Siberian water systems of the rivers Ob, Yenisey, Lena and Kolyma. The mass variations from GRACE data are combined with atmospheric data of the NCEP reanalysis to calculate the freshwater fluxes in the Arctic Ocean. The freshwater fluxes strongly influences the salinity and the oceanographic regime of the Arctic Ocean. In turn, the Arctic Ocean controls the global thermohaline circulation which is very important for the global climate. Because these large currents of the ocean influence the global climate, the changes of the freshwater fluxes in the Arctic Ocean are an important factor for the global climate change. The runoff can be measured pointwise with high temporal resolution, but measurements in the high latitudes are difficulty and expensive. Independent methods to measure the mass changes in the Arctic can help to determine the freshwater fluxes on large spatial scales, and contribute to understand the coupled and complex processes of the Arctic. Until present, the complex error structure of the GRACE data are not fully understand. The dissertation examines the errors and analysizes the leakage caused by the limited spectrum of the Stokes coefficients. A proposal for a solution will be discussed. The following steps are important: Expanding the GRACE data with adequate terms of degree one; Valuation of leakage errors because of the limited spectrum. Leakage due to oceanographic signals of the Arctic Ocean are small (< 1%). Leakage errors due to signals on land produces relative errors of basin averages of 8-17%. Beyond that, the largest errors are caused by the coefficients of higher degree. Filtering is an effective method to damp the error signals. In addition to the common filters described in the literature, a filter method, called composite filter, was created. Significant structures from hydrological models can be deteceted in the GRACE data without any other filtering. Only the residual signals should be filtered by using one of the common filters. In comparison to the common filters, the composite filter represents the signal strength, the signal structures, the amplitude and the phase of the saisonal signal on the continents much better. Combining hydrological mass variations from GRACE data with atmospheric data (for example the NCEP reanalysis) the runoff of the four Siberian river systems can be calculated. The validation of the calculated runoff using observations leads to a good agreement (83% for Yenisey and Lena). Furthermore, it is possible to combine the runoff of a river system with measurements of water level and salinity in the Arctic Ocean. The high runoff of the Lena river system in spring is visible in the water level changes in the Laptev sea.
3

Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel sibirischer Flusssysteme

Scheller, Marita 15 October 2012 (has links)
Aus Beobachtungsdaten der Satellitenmission GRACE (Gravity Recovery and Climate Experiment) können Variationen des Erdschwerefeldes auf großen räumlichen Skalen mit hoher Genauigkeit abgeleitet werden. Die Variationen auf zeitlichen Skalen von mehreren Tagen bis Wochen und räumlichen Skalen von wenigen hundert Kilometern sind insbesondere auf Änderungen der kontinentalen Wassermassen zurückzuführen. Die vorliegende Promotionsarbeit beschäftigt sich mit der Bestimmung hydrologischer Massenvariationen aus GRACE-Daten am Beispiel der vier größten sibirischen Flusseinzugsgebiete Ob, Jenissei, Lena und Kolyma. Darauf aufbauend sollen in Kombination mit atmosphärischen Daten der NCEP-Reanalyse Süßwassereinträge in den Arktischen Ozean abgeleitet werden. Die Süßwassereinträge beeinflussen nachhaltig den Salzgehalt und damit das ozeanographische Regime des Arktischen Ozeans, welcher wiederum einen Einfluss auf die globale thermohaline Zirkulation hat. Da die großen Strömungen des Weltozeans einen grundlegenden Faktor des globalen Klimageschehens darstellen, sind die Änderungen des Süßwassereintrages ein wichtiger Aspekt hinsichtlich prognostizierter Klimatrends. Der Abfluss kann an ausgewählten Messpunkten mit einer hohen zeitlichen Auflösung beobachtet werden. Die Datenreihen weisen jedoch immer wieder Lücken auf und die bodengebundenen Messungen sind oft schwierig und kostenintensiv. Messmethoden, die unabhängig vom Zugang ins Messgebiet sind, können einen großen Fortschritt bei der Beobachtung sich ändernder Massen und Süßwasserflüsse leisten und damit einen Beitrag für ein besseres Verständnis gekoppelter komplexer Prozesse der Arktis liefern. Da die Fehlerstruktur der GRACE-Daten komplex und bis heute nicht vollständig verstanden ist, erfolgt zunächst eine Untersuchung des GRACE-Fehlerhaushaltes. Zudem werden die Fehlereffekte aufgrund des begrenzten räumlichen Spektrums und damit einhergehender Leck-Effekte auf Ebene von Gebietsmittelwerten analysiert und Lösungsvorschläge diskutiert. Dabei sind folgende Aspekte von Bedeutung: Erweiterung der GRACE-Datenreihe um geeigente Terme ersten Grades und Abschätzung von Leck-Effekten, verursacht durch das begrenzte Spektrum der Kugelfunktionsentwicklung. Leck-Effekte aufgrund ozeanischer Signalanteile sind bzgl. der Einzugsgebiete sibirischer Flusssysteme klein (< 1%), wohingegen Leck-Effekte aufgrund kontinentaler Signalanteile je nach Gebietsgröße relative Fehler von 8-17% nach sich ziehen. Die größten Fehlereffekte resultieren jedoch aus den Koeffizienten hoher Grade. Die Filterung der GRACE-Daten ermöglicht die Glättung fehlerbehafterer Signalanteile. Neben den in der Literatur gängigen Filtern wurde im Rahmen der Arbeit ein Kombinationsfilter entwickelt, welches auf Basis von räumlichen Vorinformationen aus Hydrologiemodellen signifikante Signalstrukturen in den GRACE-Datenreihen detektiert. Somit muss lediglich ein Restsignal mittels Filterung gedämpft werden. Mit dem Kombinationsfilter können sowohl feinere Signalstrukturen als auch größere Signalamplituden auf Land erhalten werden. Im Vergleich zu reinen Filteranwendungen werden hier Gesamtsignalstärke, Amplitude und Phase des jährlichen Signals gut repräsentiert. Darauf aufbauend lassen sich, in Kombination mit atmosphärischen Daten, Abflüsse für die sibirischen Flusssysteme aus GRACE-Wasserspeichervariationen ableiten. Die Validierung der berechneten Abflüsse anhand beobachteter Abflüsse zeigt eine hohe Übereinstimmung von bis zu 83%. Eine Gegenüberstellung des berechneten Abflusses der Lena mit Wasserstandsmessungen im Mündungsbereich zeigt zudem einen Zusammenhang zwischen dem maximalen Abfluss im Frühjahr und einer Zunahme des Wasserstandes in der Laptewsee. / The satellite mission GRACE (Gravity Recovery and Climate Experiment) observes the earth's gravity field on temporal scales of a few days to several weeks and spatial scales of a few hundred kilometers with high accuracy. A large part of the variations of the gravity field originate from hydrological mass changes on the continents. The dissertation discusses the determination of hydrological mass variations from GRACE for the Siberian water systems of the rivers Ob, Yenisey, Lena and Kolyma. The mass variations from GRACE data are combined with atmospheric data of the NCEP reanalysis to calculate the freshwater fluxes in the Arctic Ocean. The freshwater fluxes strongly influences the salinity and the oceanographic regime of the Arctic Ocean. In turn, the Arctic Ocean controls the global thermohaline circulation which is very important for the global climate. Because these large currents of the ocean influence the global climate, the changes of the freshwater fluxes in the Arctic Ocean are an important factor for the global climate change. The runoff can be measured pointwise with high temporal resolution, but measurements in the high latitudes are difficulty and expensive. Independent methods to measure the mass changes in the Arctic can help to determine the freshwater fluxes on large spatial scales, and contribute to understand the coupled and complex processes of the Arctic. Until present, the complex error structure of the GRACE data are not fully understand. The dissertation examines the errors and analysizes the leakage caused by the limited spectrum of the Stokes coefficients. A proposal for a solution will be discussed. The following steps are important: Expanding the GRACE data with adequate terms of degree one; Valuation of leakage errors because of the limited spectrum. Leakage due to oceanographic signals of the Arctic Ocean are small (< 1%). Leakage errors due to signals on land produces relative errors of basin averages of 8-17%. Beyond that, the largest errors are caused by the coefficients of higher degree. Filtering is an effective method to damp the error signals. In addition to the common filters described in the literature, a filter method, called composite filter, was created. Significant structures from hydrological models can be deteceted in the GRACE data without any other filtering. Only the residual signals should be filtered by using one of the common filters. In comparison to the common filters, the composite filter represents the signal strength, the signal structures, the amplitude and the phase of the saisonal signal on the continents much better. Combining hydrological mass variations from GRACE data with atmospheric data (for example the NCEP reanalysis) the runoff of the four Siberian river systems can be calculated. The validation of the calculated runoff using observations leads to a good agreement (83% for Yenisey and Lena). Furthermore, it is possible to combine the runoff of a river system with measurements of water level and salinity in the Arctic Ocean. The high runoff of the Lena river system in spring is visible in the water level changes in the Laptev sea.

Page generated in 0.1544 seconds