Return to search

Optical Nonlinearities in Semiconductors for Limiting

I have conducted detailed experimental and theoretical studies of the nonlinear optical properties of semiconductor materials useful for optical limiting. I have constructed optical limiters utilizing two-photon absorption along with photogenerated carrier defocusing as well as the bound electronic nonlinearity using the semiconducting material ZnSe. I have optimized the focusing geometry to achieve a large dynamic range while maintaining a low limiting energy for the device. The ZnSe monolithic optical limiter has achieved a limiting energy as low as 13 nJ (corresponding to 300W peak power) and a dynamic range as large as 105 at 532 nm using psec pulses. Theoretical analysis showed that the ZnSe device has a broad-band response covering the wavelength range from 550 nm to 800 nm. Moreover, I found that existing theoretical models (e.g. the Auston model and the band-resonant model using Boltzmann statistics) adequately describe the photo-generated carriers refractive nonlinearity in ZnSe.
Material nonlinear optical parameters, such as the two-photon absorption coefficient β_2=5.5cm/GW, the refraction per unit carrier density σ_n=-0.8∗10^-21cm^3 and the bound electronic refraction n_2=-4∗10^-11esu, have been measured via time-integrated beam distortion experiments in the near field. A numerical code has been written to simulate the beam distortion in order to extract the previously mentioned material parameters. In addition, I have performed time-resolved distortion measurements that provide an intuitive picture of the carrier generation process via two-photon absorption.
I also characterized the optical nonlinearities in a ZnSe Fabry-Perot thin film structure (an interference filter). I concluded that the nonlinear absorption alone in the thin film is insufficient to build an effective optical limiter, as it did not show a net change in refraction using psec pulses. An innovative numerical program was developed to simulate the nonlinear beam propagation inside the Fabry-Perot structure. For comparison, pump-probe experiments were performed using both thin film and bulk ZnSe. The results showed relatively long carrier lifetimes (>300 psec) in both samples. A numerical code was written to fit the pump-probe experimental results. The fitting yielded that carrier lifetimes (recombination through traps), radiative decay rate, two-photon absorption coefficient as well as the free carrier absorption coefficient for ZnSe bulk material.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc331203
Date05 1900
CreatorsWu, Yuan-Yen
ContributorsVan Stryland, Eric W., Soileau, M. J., West, Bruce J., Duggan, Jerome L., Kobe, Donald Holm
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
Formatviii, 239 leaves : ill., Text
RightsPublic, Wu, Yuan-Yen, Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.0016 seconds