• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 17
  • 17
  • 9
  • 7
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of Novel Linear Ultrashort Pulse Measurement Techniques

Chen, Chin-hao 10 September 2012 (has links)
Full field characterization is an important issue for ultrafast optoelectronics. By suitable nonlinear constrain, several approaches, such as FROG, SPIDERS, MIIPS and so on, have been developed for providing detail information of optical pulses. However, phase matching bandwidth of nonlinear material limit the functionality for broadband signal. In this thesis, linear approach without limitation of phase matching bandwidth is proposed. Theoretically, we successfully demonstrated the feasibility of proposed method. We analyzed the limitation and discussed the pulse compression power with the proposed method. Besides, we also proposed experimental method for this method.
2

Calibration Model for Detection of Potential Demodulating Behaviour in Biological Media Exposed to RF Energy

Abd-Alhameed, Raed, See, Chan H., Excell, Peter S., McEwan, Neil J., Ali, N.T. 11 May 2017 (has links)
Yes / Potential demodulating ability in biological tissue exposed to Radio Frequency (RF) signals intrinsically requires an unsymmetrical diode-like nonlinear response in tissue samples. This may be investigated by observing possible generation of the second harmonic in a cavity resonator designed to have fundamental and second harmonic resonant frequencies with collocated antinodes. Such a response would be of interest as being a mechanism that could enable demodulation of information-carrying waveforms having modulating frequencies in ranges that could interfere with cellular processes. Previous work has developed an experimental system to test for such responses: the present work reports an electric circuit model devised to facilitate calibration of any putative nonlinear RF energy conversion occurring within a nonlinear test-piece inside the cavity. The method is validated computationally and experimentally using a well-characterised nonlinear device. The variations of the reflection coefficients of the fundamental and second harmonic responses of the cavity due to adding nonlinear and lossy material are also discussed. The proposed model demonstrates that the sensitivity of the measurement equipment plays a vital role in deciding the required input power to detect any second harmonic signal, which is expected to be very weak. The model developed here enables the establishment of a lookup table giving the level of the second harmonic signal in the detector as a function of the specific input power applied in a measurement. Experimental results are in good agreement with the simulated results. / Engineering and Physical Science Research Council through Grant EP/E022936A
3

Characterization and Development of General Material Models for Use in Modeling Structures Bonded with Ductile Adhesives

Cassino, Christopher 20 July 2005 (has links)
Structural adhesives are materials that are capable of bearing significant loads in shear, and sometimes tension, over a range of strains and strain rates. Adhesively bonded structures can dissipate large amounts of mechanical energy and can be lighter and more efficient than many bolted or vibration welded parts. The largest barrier to using structural adhesives in more applications is the many challenges engineers are presented with when designing and analyzing adhesively bonded structures. This study develops, characterizes and compares several material models for use in finite element analysis of adhesively bonded structures, in general, and a bonded tongue and groove (TNG) joint in particular. The results indicate that it is possible to develop a general material model for ductile adhesives used in structural applications under quasi-static conditions. Furthermore, the results also show that it is also possible to take bulk material data and apply it to an adhesively bonded specimen provided that the mode of failure of the bulk test specimen closely approximates the mode of failure of the bonded joint. / Master of Science
4

Optical Nonlinearities in Semiconductors for Limiting

Wu, Yuan-Yen 05 1900 (has links)
I have conducted detailed experimental and theoretical studies of the nonlinear optical properties of semiconductor materials useful for optical limiting. I have constructed optical limiters utilizing two-photon absorption along with photogenerated carrier defocusing as well as the bound electronic nonlinearity using the semiconducting material ZnSe. I have optimized the focusing geometry to achieve a large dynamic range while maintaining a low limiting energy for the device. The ZnSe monolithic optical limiter has achieved a limiting energy as low as 13 nJ (corresponding to 300W peak power) and a dynamic range as large as 105 at 532 nm using psec pulses. Theoretical analysis showed that the ZnSe device has a broad-band response covering the wavelength range from 550 nm to 800 nm. Moreover, I found that existing theoretical models (e.g. the Auston model and the band-resonant model using Boltzmann statistics) adequately describe the photo-generated carriers refractive nonlinearity in ZnSe. Material nonlinear optical parameters, such as the two-photon absorption coefficient β_2=5.5cm/GW, the refraction per unit carrier density σ_n=-0.8∗10^-21cm^3 and the bound electronic refraction n_2=-4∗10^-11esu, have been measured via time-integrated beam distortion experiments in the near field. A numerical code has been written to simulate the beam distortion in order to extract the previously mentioned material parameters. In addition, I have performed time-resolved distortion measurements that provide an intuitive picture of the carrier generation process via two-photon absorption. I also characterized the optical nonlinearities in a ZnSe Fabry-Perot thin film structure (an interference filter). I concluded that the nonlinear absorption alone in the thin film is insufficient to build an effective optical limiter, as it did not show a net change in refraction using psec pulses. An innovative numerical program was developed to simulate the nonlinear beam propagation inside the Fabry-Perot structure. For comparison, pump-probe experiments were performed using both thin film and bulk ZnSe. The results showed relatively long carrier lifetimes (>300 psec) in both samples. A numerical code was written to fit the pump-probe experimental results. The fitting yielded that carrier lifetimes (recombination through traps), radiative decay rate, two-photon absorption coefficient as well as the free carrier absorption coefficient for ZnSe bulk material.
5

Entwicklung von adaptiven Algorithmen für nichtlineare FEM

Bucher, Anke, Meyer, Arnd, Görke, Uwe-Jens, Kreißig, Reiner 01 September 2006 (has links) (PDF)
The development of adaptive finite element procedures for the solution of geometrically and physically nonlinear problems in structural mechanics is very important for the augmentation of the efficiency of FE-codes. In this contribution methods of mesh refinement as well as mesh coarsening are presented for a material model considering finite elasto-plastic deformations. For newly generated elements stresses, strains and internal variables have to be calculated. This implies the determination of the nodal values as well as the Gaussian point values of the new elements based on the transfer of data from the former mesh. Analogously, the coarsening of less important elements necessitates the determination of these values for the newly created father elements.
6

Experimental Techniques For Nonlinear Material Characterization: A Nonlinear Spectrometer Using A White-light Continuum Z-scan

Balu, Mihaela 01 January 2006 (has links)
The main goal of this dissertation is to introduce and demonstrate a new method for the rapid determination of the nonlinear absorption spectra and the dispersion of the nonlinear refraction of optical materials in the visible and near IR spectral regions. However, conventional methods like, white-light continuum pump-probe and Z-scan techniques were used to measure the peak 2PA cross-sections for a number of commercially available photoinitiators. In the new method mentioned above, a high energy, broadband femtosecond white-light continuum is used to replace the single wavelength source conventionally used in a Z-scan experiment. In a Z-scan experiment, the transmittance of a focused beam through a sample is monitored as the sample travels through the focus, in the Z direction, along the focused beam. Providing the sample exhibits nonlinear absorption and/or refraction, the detector monitors a change in transmittance and/or a change in the beam divergence (if the energy is partially collected through an aperture in front of the detector). Replacing the single wavelength source with a white-light continuum allows for a much faster way of measuring nonlinear absorption/refraction spectra. This could eliminate the need for using other tunable sources (e.g. Optical Parameter Generators/Amplifiers) for nonlinear measurements. These sources made nonlinear spectroscopy using Z-scan experiments a time consuming task. This new source/method allows for rapid and simultaneous measurement of the nonlinear absorption spectrum and the dispersion of the nonlinear refraction. We have confirmed the functionality of the continuum as a source for nonlinear optical characterization of materials by using it to perform Z-scans on the well characterized semiconductors ZnSe and ZnS and on solutions of organic dyes.
7

Entwicklung von adaptiven Algorithmen für nichtlineare FEM

Bucher, Anke, Meyer, Arnd, Görke, Uwe-Jens, Kreißig, Reiner 01 September 2006 (has links)
The development of adaptive finite element procedures for the solution of geometrically and physically nonlinear problems in structural mechanics is very important for the augmentation of the efficiency of FE-codes. In this contribution methods of mesh refinement as well as mesh coarsening are presented for a material model considering finite elasto-plastic deformations. For newly generated elements stresses, strains and internal variables have to be calculated. This implies the determination of the nodal values as well as the Gaussian point values of the new elements based on the transfer of data from the former mesh. Analogously, the coarsening of less important elements necessitates the determination of these values for the newly created father elements.
8

A Nonlinear Constitutive Model for High Density Polyethylene at High Temperature

Rajasekaran, Nepolean 20 April 2011 (has links)
No description available.
9

Asymptotically Correct Dimensional Reduction of Nonlinear Material Models

Burela, Ramesh Gupta January 2011 (has links) (PDF)
This work aims at dimensional reduction of nonlinear material models in an asymptotically accurate manner. The three-dimensional(3-D) nonlinear material models considered include isotropic, orthotropic and dielectric compressible hyperelastic material models. Hyperelastic materials have potential applications in space-based inflatable structures, pneumatic membranes, replacements for soft biological tissues, prosthetic devices, compliant robots, high-altitude airships and artificial blood pumps, to name a few. Such structures have special engineering properties like high strength-to-mass ratio, low deflated volume and low inflated density. The majority of these applications imply a thin shell form-factor, rendering the problem geometrically nonlinear as well. Despite their superior engineering properties and potential uses, there are no proper analysis tools available to analyze these structures accurately yet efficiently. The development of a unified analytical model for both material and geometric nonlinearities encounters mathematical difficulties in the theory but its results have considerable scope. Therefore, a novel tool is needed to dimensionally reduce these nonlinear material models. In this thesis, Prof. Berdichevsky’s Variational Asymptotic Method(VAM) has been applied rigorously to alleviate the difficulties faced in modeling thin shell structures(made of such nonlinear materials for the first time in the history of VAM) which inherently exhibit geometric small parameters(such as the ratio of thickness to shortest wavelength of the deformation along the shell reference surface) and physical small parameters(such as moderate strains in certain applications). Saint Venant-Kirchhoff and neo-Hookean 3-D strain energy functions are considered for isotropic hyperelastic material modeling. Further, these two material models are augmented with electromechanical coupling term through Maxwell stress tensor for dielectric hyperelastic material modeling. A polyconvex 3-D strain energy function is used for the orthotropic hyperelastic model. Upon the application of VAM, in each of the above cases, the original 3-D nonlinear electroelastic problem splits into a nonlinear one-dimensional (1-D) through-the-thickness analysis and a nonlinear two-dimensional(2-D) shell analysis. This greatly reduces the computational cost compared to a full 3-D analysis. Through-the-thickness analysis provides a 2-D nonlinear constitutive law for the shell equations and a set of recovery relations that expresses the 3-D field variables (displacements, strains and stresses) through thethicknessintermsof2-D shell variables calculated in the shell analysis (2-D). Analytical expressions (asymptotically accurate) are derived for stiffness, strains, stresses and 3-D warping field for all three material types. Consistent with the three types of 2-D nonlinear constitutive laws,2-D shell theories and corresponding finite element programs have been developed. Validation of present theory is carried out with a few standard test cases for isotropic hyperelastic material model. For two additional test cases, 3-Dfinite element analysis results for isotropic hyperelastic material model are provided as further proofs of the simultaneous accuracy and computational efficiency of the current asymptotically-correct dimensionally-reduced approach. Application of the dimensionally-reduced dielectric hyperelastic material model is demonstrated through the actuation of a clamped membrane subjected to an electric field. Finally, the through-the-thickness and shell analysis procedures are outlined for the orthotropic nonlinear material model.
10

Wave Propagation in an Elastic Half-Space with Quadratic Nonlinearity

Kuechler, Sebastian 24 August 2007 (has links)
This study investigates wave propagation in an elastic half-space with quadratic nonlinearity due to a line load on the surface. The consideration of this problem is one of the well known Lamb problems. Even since Lamb's original solution, numerous investigators have obtained solutions to many different variants of the Lamb problem. However, most of the solutions existing in the current literature are limited to wave propagation in a linear elastic half-space. In this work, the Lamb problem in an elastic half-space with quadratic nonlinearity is considered. For this, the problem is first formulated as a hyperbolic system of conservation laws, which is then solved numerically using a semi-discrete central scheme. The numerical method is implemented using the package CentPack. The accuracy of the numerical method is first studied by comparing the numerical solution with the analytical solution for a half-space with linear response (the original Lamb's problem). The numerical results for the half-space with quadratic nonlinearity are than studied using signal-processing tools such as the fast Fourier transform (FFT) in order to analyze and interpret any nonlinear effects. This in particular gives the possibility to evaluate the excitation of higher order harmonics whose amplitude is used to infer material properties. To quantify and compare the nonlinearity of different materials, two parameters are introduced; these parameters are similar to the acoustical nonlinearity parameter for plane waves.

Page generated in 0.109 seconds