Return to search

A General Theory of Geodesics with Applications to Hyperbolic Geometry

In this thesis, the geometry of curved surfaces is studied using the methods of differential geometry. The introduction of manifolds assists in the study of classical two-dimensional surfaces. To study the geometry of a surface a metric, or way to measure, is needed. By changing the metric on a surface, a new geometric surface can be obtained. On any surface, curves called geodesics play the role of "straight lines" in Euclidean space. These curves minimize distance locally but not necessarily globally. The curvature of a surface at each point p affects the behavior of geodesics and the construction of geometric objects such as circles and triangles. These fundamental ideas of manifolds, geodesics, and curvature are developed and applied to classical surfaces in Euclidean space as well as models of non-Euclidean geometry, specifically, two-dimensional hyperbolic space.

Identiferoai:union.ndltd.org:unf.edu/oai:digitalcommons.unf.edu:etd-1101
Date01 January 1995
CreatorsLogan, Deborah F
PublisherUNF Digital Commons
Source SetsUniversity of North Florida
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceUNF Theses and Dissertations

Page generated in 0.0021 seconds