Return to search

Application of Road Infrastructure Safety Assessment Methods at Intersections

Traffic safety at intersections is a particularly difficult phenomenon to study, given the fact that accidents occur randomly in time and space thereby making short-term measurement, assessment and comparison difficult. The EU directive 2008/96/EC introduced road infrastructure safety management, which offers a five layer structure for developing safer road infrastructure has been used to develop tools for accident prediction and black spot management analysis which has been applied in this work to assess the safety level of intersections in Norrköping city in Sweden. Accident data history from STRADA (Swedish Traffic Accident Data Acquisition) and the network demand model for Norrköping city were used to model black spots and predict the expected number of accidents at intersections using PTV Visum Safety tool, after STRADA accident classification was restructured and the Swedish accident prediction model (APM) was configured and tested to work within the tool using the model from the Swedish road administration (SRA). The performance of the default (Swiss) and the Swedish APM was compared and identified locations with the high accident records, predicted accident counts and traffic volumes were audited using qualitative assessment checklist from Street-Audit tool. The results from these methods were analysed, validated and compared. This work provides recommendations on the used quantitative and qualitative methods to prevent accident occurrence at the identified locations.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-127334
Date January 2016
CreatorsAdedokun, Adeyemi
PublisherLinköpings universitet, Kommunikations- och transportsystem, Linköpings universitet, Tekniska högskolan
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0023 seconds