Return to search

Microscope opto-acoustique utilisant la technique d'acoustique picoseconde pour l'échographie cellulaire / An opto-acoustic microscope based on picosecond ultrasonics for single cell ultrasonography

L’adhésion et les propriétés mécaniques des cellules jouent un rôle crucial dans le fonctionnementcellulaire ainsi que dans l’apparition de maladies dégénératives. Pour mesurer ces quantités, nousavons développé dans ce travail un microscope opto-acoustique pour l’imagerie non-invasive de lamécanique de cellules individuelles avec une résolution sub-cellulaire. Ce microscope utilise latechnique d’acoustique picoseconde qui permet de générer et détecter optiquement des ondesacoustiques avec une large bande s’étendant jusqu’à 1 THz. Dans le but de reproduire lecomportement mécanique des cellules à des fréquences acoustiques supérieures à 10 GHz, uneétude sur des objets mous biomimétiques est menée dans une première partie. Les rigidité, viscositéet épaisseur de ces systèmes multicouches micrométriques sont caractérisées. Dans la deuxièmepartie de ce manuscrit, la technique d’acoustique picoseconde est employée pour imager le contactentre une cellule animale modèle et un biomatériau, ainsi que l’impédance acoustique de cette cellule.Un outil d’analyse nécessaire pour le traitement du signal acoustique est mis en place. Enfin, unmicroscope opto-acoustique opérationnel entre 10 et 100 GHz est présenté dans la dernière partie. Ilest basé sur un dispositif pompe-sonde asynchrone qui permet de produire des images acoustiquesen un temps court (4 pixels/min) avec une résolution axiale de l’ordre d’une dizaine de nm. Cetteapproche est comparable à une échographie mais à l’échelle cellulaire. L’étude de l’adhésion et despropriétés mécaniques de plusieurs types de cellules à différents stades de maturation est abordée.Des images topographiques des zones fines (< 50 nm) d’une cellule sont également analysées. Lemicroscope développé durant cette thèse offrira la possibilité d’explorer de nouvelles pistes derecherche dans les domaines de la biologie cellulaire et des biotechnologies. / Adhesion and mechanical properties of cells are key players in several cellular functions and areinvolved in the development of degenerative diseases. To characterize these quantities, we developedin this work an opto-acoustic microscope for the non-invasive imaging of the mechanics of individualcells with a sub-cell resolution. This microscope uses the Picosecond Ultrasonics (PU) technique thatallows optical generation and detection of acoustic waves with a large bandwidth up to 1 THz. In orderto reproduce the mechanical behaviour of cells at acoustic frequencies greater than 10 GHz, a studyof cell-mimicking micro-objects is first considered. The rigidity, viscosity and thickness of these microlayeredstructures are characterized. In the second part of this manuscript, the PU technique isapplied for imaging the contact between a simple animal cell and a biomaterial, as well as the acousticimpedance of this cell. An essential tool for analysing the acoustic signal is developed. In the thirdpart, the opto-acoustic microscope operating between 10 and 100 GHz is finally presented. It is basedon an asynchronous pump-probe setup that allows producing acoustic images within a short time (4pixels/min) and offering an axial resolution of about 10 nm. This is similar to cell ultrasonography. Thestudy of the adhesion and of the mechanical properties of different cell types at different stages of cellmaturation is then tackled. The topographic images of thin cell regions (< 50 nm) are also analysed.The microscope implemented during this thesis should offer the possibility of exploring new avenuesin the field of cellular biology.

Identiferoai:union.ndltd.org:theses.fr/2014BORD0167
Date06 October 2014
CreatorsAbi Ghanem, Maroun
ContributorsBordeaux, Audoin, Bertrand, Dehoux, Thomas
Source SetsDépôt national des thèses électroniques françaises
LanguageFrench
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text

Page generated in 0.0022 seconds