Return to search

LDPC code-based bandwidth efficient coding schemes for wireless communications

This dissertation deals with the design of bandwidth-efficient coding schemes
with Low-Density Parity-Check (LDPC) for reliable wireless communications. Code
design for wireless channels roughly falls into three categories: (1) when channel state
information (CSI) is known only to the receiver (2) more practical case of partial CSI
at the receiver when the channel has to be estimated (3) when CSI is known to the
receiver as well as the transmitter. We consider coding schemes for all the above
categories.
For the first scenario, we describe a bandwidth efficient scheme which uses highorder
constellations such as QAM over both AWGN as well as fading channels. We
propose a simple design with LDPC codes which combines the good properties of
Multi-level Coding (MLC) and bit-interleaved coded-modulation (BICM) schemes.
Through simulations, we show that the proposed scheme performs better than MLC
for short-medium lengths on AWGN and block-fading channels. For the first case,
we also characterize the rate-diversity tradeoff of MIMO-OFDM and SISO-OFDM
systems. We design optimal coding schemes which achieve this tradeoff when transmission
is from a constrained constellation. Through simulations, we show that with
a sub-optimal iterative decoder, the performance of this coding scheme is very close
to the optimal limit for MIMO (flat quasi-static fading), MIMO-OFDM and SISO OFDM systems.
For the second case, we design non-systematic Irregular Repeat Accumulate
(IRA) codes, which are a special class of LDPC codes, for Inter-Symbol Interference
(ISI) fading channels when CSI is estimated at the receiver. We use Orthogonal Frequency
Division Multiplexing (OFDM) to convert the ISI fading channel into parallel
flat fading subchannels. We use a simple receiver structure that performs iterative
channel estimation and decoding and use non-systematic IRA codes that are optimized
for this receiver. This combination is shown to perform very close to a receiver
with perfect CSI and is also shown to be robust to change in the number of channel
taps and Doppler.
For the third case, we look at bandwidth efficient schemes for fading channels
that perform close to capacity when the channel state information is known at the
transmitter as well as the receiver. Schemes that achieve capacity with a Gaussian
codebook for the above system are already known but not for constrained constellations.
We derive the near-optimum scheme to achieve capacity with constrained constellations
and then propose coding schemes which perform close to capacity. Through
linear transformations, a MIMO system can be converted into non-interfering parallel
subchannels and we further extend the proposed coding schemes to the MIMO case
too.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-1780
Date02 June 2009
CreatorsSankar, Hari
ContributorsNarayanan, Krishna R.
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
TypeBook, Thesis, Electronic Dissertation, text
Formatelectronic, application/pdf, born digital

Page generated in 0.0019 seconds