Esta Tese estuda a implementação de um novo mecanismo de análise e atuação em Redes de Sensores Sem Fio (RSSF) com múltiplos saltos baseado em características de cognição aplicadas aos nós que compõem a rede. Para tanto, é proposto um algoritmo de detecção de variabilidade dos nós sensores, envolvendo movimentação do nó, alcance do sinal da antena do sensor, quantidade de nós que fazem parte da rede e o número de conexões possíveis com nós vizinhos. Além do algoritmo de detecção de variabilidade, propõe-se um sistema multilayer denominado Adaptive Cognitive System (ACS) com base na arquitetura de Cognitive Networks (CN), que abrange: coleta, tratamento e tomada de decisão. O tratamento se refere à parte cognitiva do sistema, contemplando a criação do Cognitive Processor Module (CPMod), que por sua vez, abrange a semântica da rede, aplicação de Lógica Fuzzy e interação com um simulador de Wireless Sensor Networks (WSN) e a tomada de decisão é realizada pelo CPMod com base no resultado de análises executadas em rounds e histórico da rede com o uso de funções de pertinência de fuzzificação e defuzzificação, regras Fuzzy e inferência sobre informações coletadas da rede. Observou-se com os testes realizados na rede, utilizando-se o algoritmo de detecção, que a variabilidade dos nós sensores afeta diretamente o desempenho da rede, devido à necessidade de reestabelecimento de links e rotas entre os nós. Através de testes realizados via software na WSN, identificou-se que com o uso do ACS houve melhora significativa no desempenho em relação ao atraso fim-a-fim, latência, quantidade de pacotes descartados e de energia consumida pelos nós na rede. O ACS demonstrou potencial para a solução de problemas relacionados com as métricas destacadas, realizando ajustes em múltiplas camadas de rede do padrão IEEE 802.15.4 para até 200 nós na rede. / This Dissertation examines the implementation of a mechanism to analyze and act on multi-hop Wireless Sensor Networks (WSN) with the use of cognitive features applied to the network nodes. For this purpose, a variation detection algorithm was proposed for monitoring sensor nodes, involving the node\'s mobility features, signal range of the sensor antenna, the number of nodes in the network and the number of possible connections to neighboring nodes. In addition to the detection algorithm, a multi-layer system is proposed, named Adaptive Cognitive System (ACS). It is based on Cognitive Networks (CN) architecture, including data gathering, information treatment and decision making. The main part of the system is the Cognitive Processor Module (CPMod), which extracts the information about the WSN. In turn the Fuzzy Logic block works in tandem with the semantic engine to feed the codes to CPMod in the decision making process. The codes are the result of analysis performed on rounds using fuzzification and defuzzification membership functions, fuzzy rules and inference over information collected from the network. It was observed in tests performed in the WSN, using the detection algorithm, that the variability in sensor nodes directly affects the network performance due to the effort spent in rerounting links and paths. Through WSN testing performed via software, it was found that using the ACS implies in significant improvement in performance over the end-to-end delay, network latency, dropped packets and amount of energy consumed by nodes on the network. The ACS potential is proven for solving problems related to the previously mentioned metrics, performing adjustments on multiple network layers standardized by IEEE 802.15.4 up to 200 nodes in the network.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-07022017-111104 |
Date | 18 April 2016 |
Creators | Wagner, Marcel Stefan |
Contributors | Ramirez, Miguel Arjona |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | English |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0022 seconds