Return to search

Núcleos positivos definidos em espaços 2-homogêneos / Positive definite kernels on two-point homogeneous spaces

Neste trabalho analisamos a positividade definida estrita de núcleos contínuos sobre um espaço compacto 2-homogêneo. R. Gangolli (1967) apresentou uma caracterização completa para os núcleos que são contínuos, isotrópicos e positivos definidos sobre um espaço compacto 2-homogêneo Md: a parte isotrópica do núcleo é uma série de Fourier uniformemente convergente, com coeficientes não negativos, em relação a certos polinômios de Jacobi atrelados a Md. Uma das contribuições de nosso trabalho é uma caracterização para a positividade definida estrita de tais núcleos, complementando a caracterização apresentada por Chen et al. (2003) no caso em que Md é uma esfera unitária de dimensão maior ou igual a 2. Outra contribuição do trabalho é uma extensão do resultado de Gangolli para núcleos sobre produtos cartesianos de espaços compactos 2-homogêneos, e a consequente caracterização para núcleos estritamente positivos definidos neste mesmo contexto. Por fim, a última contribuição do trabalho envolve a análise do grau de diferenciabilidade da parte isotrópica de um núcleo contínuo, isotrópico e positivo definido sobre Md e a aplicabilidade de tal análise em resultados envolvendo a positividade definida estrita. / In this work we analyze the strict positive definiteness of continuous kernels on compact two-point homogeneous spaces Md. R. Gangolli (1967) presented a complete characterization for continuous, isotropic and positive definite kernels on Md: the isotropic part of the kernel is a uniformly convergent Fourier series of certain Jacobi polynomials associated to Md, with nonnegative coefficients. One of the contributions of our work is a characterization for the strict positive definiteness of such kernels, completing that one presented by Chen et al. (2003) in the case Md is the unit sphere of dimension at least 2. Another contribuition of this work is an extension of Gangolli\'s result for kernels on a product of compact two-point homogeneous spaces, and the subsequent characterization of strict positive definiteness in this same context. Finally, the last contribution in this work involves the analysis of the differentiability of the isotropic part of a continuous, isotropic and positive definite kernel on Md and the applicability of such analysis in results involving the strict positive definiteness.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-02122016-102032
Date26 July 2016
CreatorsVictor Simões Barbosa
ContributorsValdir Antonio Menegatto, Cleonice Fatima Bracciali, Thaís Jordão, Fernando Rodrigo Rafaeli
PublisherUniversidade de São Paulo, Matemática, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds