Additive manufacturing, AM, is a general term for several different methods that aredefined by adding material instead of subtracting it as the traditional manufacturingmethods do. Being able to produce complex and high-strength metal componentsthrough AM has become an important research and development area in recentyears. This thanks to the short lead-time and increased level of complexity. AM ofmetal components is still a relatively new manufacturing method and there are someuncertainties regarding the process. This thesis considers the mechanical propertiesand material characterization of additive manufactured aluminum components fromthe powder AlSi10Mg. These components exhibit layer structure with a very fineunique microstructure. Due to the layer structure, test rods in two differentdirections were manufactured; vertical and horizontal, and analyzed in case of anyanisotropy occurrence. To investigate the mechanical properties and materialcharacterization of the two different AM test rods, fatigue properties, hardness andmicrostructure were analyzed and compared to traditional manufactured test rods ofaluminum alloy Al 6082-T6. This study has not been able to demonstrate that AMaluminum components would behave significantly differently (e.g. with respect to thecorrelation between fatigue resistance and tensile strength) than traditionallymanufactured components when exposed to fatigue stresses.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:uu-361930 |
Date | January 2018 |
Creators | Mattsson, Sofia |
Publisher | Uppsala universitet, Tillämpad materialvetenskap |
Source Sets | DiVA Archive at Upsalla University |
Language | Swedish |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | UPTEC Q, 1401-5773 ; 18026 |
Page generated in 0.002 seconds