Additive manufacturing using 2 photon polymerization is of great interest as it can create nanostructures with feature sizes much below the diffraction limit. It can be called as true 3D printing as it can fabricate in 3 dimensions by moving the laser spot in any 3D pattern inside the resist. This unique property is attributed to the non-linearity of two photon absorption which makes the polymerization happen only at the focal spot of the laser beam. This method has a wide range of applications such as optics/photonics, metamaterials, metasurfaces, micromachines, microfluidics, tissue engineering and drug delivery.<br>This work focuses on utilizing 2 photon fabrication for creating a metasurface by printing diabolo antenna arrays on a glass substrate and subsequently metallizing it by coating with gold. A femtosecond laser is used along with a galvo-mirror to scan the geometry inside the photoresist to create the antenna. The structure is simulated using ANSYS HFSS to study its properties and optimize the parameters. The calculations show a reflectance dip and zero reflectance for the resonance condition of 4.04 μm. An array of antennas is fabricated using the optimized properties and coated with gold using e-beam evaporation. This array is studied using a fourier transform infrared spectrometer and polarization dependent reflectance dip to 40% is observed at 6.6 μm. The difference might be due to the small errors in fabrication. This method of 3D printing of antenna arrays and metallization by a single step of e-beam evaporation is hence proved as a viable method for creating optical metasurfaces. Areas of future research for perfecting this method include incorporating an autofocusing system, printing more complicated geometries for antennas, and achieving higher resolution using techniques like stimulated emission depletion.
Identifer | oai:union.ndltd.org:purdue.edu/oai:figshare.com:article/7423751 |
Date | 17 January 2019 |
Creators | Jithin Prabha (5930795) |
Source Sets | Purdue University |
Detected Language | English |
Type | Text, Thesis |
Rights | CC BY 4.0 |
Relation | https://figshare.com/articles/3D_Printing_of_Nanoantenna_Arrays_for_Optical_Metasurfaces/7423751 |
Page generated in 0.0025 seconds