Background: A large number of human inherited and acquired diseases and phenotypes are caused by mutations in G protein-coupled receptors (GPCR). Genome-wide association studies (GWAS) have shown that variations in the ADGRD1 (GPR133) locus are linked with differences in metabolism, human height and heart frequency. ADGRD1 is a Gs protein-coupled receptor belonging to the class of adhesion GPCRs. Results: Analysis of more than 1000 sequenced human genomes revealed approximately 9000 single nucleotide polymorphisms (SNPs) in the human ADGRD1 as listed in public data bases. Approximately 2.4 % of these SNPs are located in exons resulting in 129 non-synonymous SNPs (nsSNPs) at 119 positions of ADGRD1. However, the functional relevance of those variants is unknown. In-depth characterization of these amino acid changes revealed several nsSNPs (A448D, Q600stop, C632fs [frame shift], A761E, N795K) causing full or partial loss of receptor function, while one nsSNP (F383S) significantly increased basal activity of ADGRD1. Conclusion: Our results show that a broad spectrum of functionally relevant ADGRD1 variants is present in the human population which may cause clinically relevant phenotypes, while being compatible with life when heterozygous.
Identifer | oai:union.ndltd.org:DRESDEN/oai:qucosa.de:bsz:15-qucosa-208803 |
Date | 18 August 2016 |
Creators | Fischer, Liane, Wilde, Caroline, Schöneberg, Torsten, Liebscher, Ines |
Contributors | Universität Leipzig, Medizinische Fakultät, BioMed Central, |
Publisher | Universitätsbibliothek Leipzig |
Source Sets | Hochschulschriftenserver (HSSS) der SLUB Dresden |
Language | English |
Detected Language | English |
Type | doc-type:article |
Format | application/pdf |
Source | BMC Genomics (2016) 17:609 DOI 10.1186/s12864-016-2937-2 |
Page generated in 0.0017 seconds