• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 126
  • 16
  • 15
  • 1
  • Tagged with
  • 158
  • 158
  • 47
  • 44
  • 44
  • 44
  • 25
  • 19
  • 18
  • 17
  • 11
  • 11
  • 9
  • 9
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Elucidation of an intricate surveillance network for cellular U snRNP homeostasis / Identifizierung eines komplexen Überwachungssystems für die Aufrechterhaltung der zellulären U snRNP-Homöostase

Meduri, Rajyalakshmi January 2017 (has links) (PDF)
Spliceosomal U-rich small ribonucleoprotein particles (U snRNPs) are the major building blocks of the nuclear pre-mRNA splicing machinery. The core composition of U snRNPs includes the name giving U snRNA and a set of seven common (Sm) proteins termed Sm B/B’, D1, D2, D3, E, F and G. These Sm proteins are arranged in the form of a toroidal ring on the single stranded conserved sequence element in the snRNA to form the Sm core domain. Even though U snRNPs assemble spontaneously in vitro, their assembly in vivo requires an amazingly large number of trans-acting assembly factors united in the Protein Arginine Methyltransferase 5 (PRMT5) and the Survival Motor Neuron (SMN) complexes. The cytoplasmic assembly pathway of U snRNPs can be divided into the early and the late phase. The early phase is dominated by the assembly chaperone, pICln, a subunit of the PRMT5 complex. This factor binds to Sm proteins and delivers them in a pICln-bound form to the PRMT5 complex. The early assembly phase then segregates into two lines. In one assembly line, a stable hexameric ring intermediate (6S complex) composed of pICln and the five Sm proteins D1, D2, F, E and G, is formed. This intermediate forms at the PRMT5 complex but dissociates from the latter upon completion of its assembly. Within the 6S complex, these Sm proteins are pre-organized into respective spatial positions adopted in the assembled U snRNP. The other assembly line forms a protein trimer composed of pICln, Sm B/B’ and D3, which unlike the 6S complex is not released from the PRMT5 complex. As a consequence of their association with pICln, Sm proteins are kinetically trapped and fail to proceed in the assembly pathway. The late phase of the U snRNP formation is dominated by the SMN complex, which resolves this kinetic trap by dissociating pICln from the pre-organized Sm proteins and, subsequently catalyzes the loading of the Sm proteins on the U snRNA. Even though basic principles of U snRNP assembly have been understood in some detail, the question arises as to why cells employ sophisticated assembly machinery for the assembly despite the reaction occurring spontaneously in vitro. A few studies have shown that the system works towards rendering specificity to the assembly reaction. However, Sm proteins in their free form expose hydrophobic surfaces to the cytosolic solvent. Hence, I reasoned that the assembly machinery of snRNPs might also prevent Sm protein aggregation. In this thesis, I describe the work that leads to the discovery of a multi-layered regulatory network for Sm proteins involving post-transcriptional and post-translational surveillance mechanisms. Here, I show that the reduced level of SMN (a key assembly factor of the late phase) leads to the initial tailback of Sm proteins over pICln followed by the transcriptional down regulation of Sm protein encoding mRNAs. In contrast, depletion of pICln, a key factor of the early phase, results in the retention of Sm proteins on the ribosomes followed by their degradation via autophagy. Furthermore, I show that exceeding levels of Sm proteins over pICln caused by overexpression results in aggregation and mis-localization of Sm proteins. Thus, my findings uncover a complex regulatory network that helps to maintain the cellular U snRNP homeostasis by either preventing or clearing the unassembled Sm protein aggregates when they are not faithfully incorporated into the U snRNPs. / Eukaryontische mRNA Moleküle werden häufig als Vorläufer (prä-mRNAs) hergestellt, und durch diverse Prozessierungschritte zur reifen Form umgewandelt. Ein wichtiger Schritt ist hierbei die Spleißreaktion, welche das Herausschneiden von Introns und die Ligation der Exons zur reifen mRNA katalysiert. Dieser Prozess wird durch das sog. Spleißosom ermöglicht, einer makromolekularen Maschinerie, deren wichtigste Bausteine Uridin-reiche kleine Ribonukleoproteinpartikel (U snRNPs) sind. Die spleißosomalen U snRNPs bestehen aus kleinen nicht-codierenden RNAs (U snRNA) sowie spezifischen und allgemeinen Proteinen. Während die spezifischen Proteine definierte Funktionen im Spleißprozess vermitteln, haben die allgemeinen Proteine, auch Sm Proteine genannt, primär strukturelle Funktion und vermitteln wichtige Schritte der U snRNP Biogenese. Jedes U snRNP Partikel enthält sieben Sm-Proteine (Sm B/B’, D1, D2, D3, E, F, G), die sich ringförmig an einen einzelsträngigen Bereich der U snRNPs anlagern und so eine toroidale Sm Corestruktur ausbilden. Obwohl die Zusammenlagerung dieses Sm Cores in vitro spontan erfolgt, werden hierfür in vivo trans-agierende Assemblierungsfaktoren benötigt. Diese agieren im Kontext zweier miteinander kooperierender Einheiten, die als PRMT5- und SMN-Komplex bezeichnet werden. Die initiale Phase wird vom Assemblierungs-Chaperon pICln dominiert, welches eine Untereinheit des PRMT5-Komplexes darstellt. Dieser Faktor stabilisiert die Sm-Proteine in höhergeordneten oligomeren Einheiten, die als Bausteine für die spätere Zusammenlagerungsreaktion dienen. pICln-assoziierte Sm-Proteine sind jedoch kinetisch gefangen und können daher nicht spontan auf die snRNA geladen werden. Diese Funktion übernimmt der SMN-Komplex, indem er die pICln-Sm Proteinkomplexe bindet und gleichzeitig pICln dissoziiert. Der SMN-Komplex fügt dann im letzten Schritt die Sm Proteine und die snRNA zum Sm Core zusammen. Es stellte sich die prinzipielle Frage, weshalb Zellen für die U snRNP Biogenese eine komplexe Maschinerie ermöglichen, wenn dieselbe Reaktion in vitro auch spontan erfolgen kann. Eine Hypothese, die dieser Arbeit zu Grunde lag, war, dass das PRMT5/SMN System in vivo notwendig ist, um die unspezifische Aggregation der hydrophoben Sm Proteine zu vermeiden und deren spezifische Zusammenlagerung mit den snRNAs zu ermöglichen. In der vorliegenden Arbeit werden Experimente geschildert, die diese Hypothese bestätigen und ein vielschichtiges regulatorisches post-transkriptionelles und post-translationales Netzwerk für die Sm-Proteine aufdeckten. Es wird gezeigt, dass eine verringerte Menge an SMN, dem Schlüsselfaktor der späten Zusammenlagerungs-Phase, zu einem anfänglichen Rückstau der Sm-Proteine an pICln zur Folge hat. Dieser Rückstau führt in einer späteren Phase zur Herunterregulierung der mRNAs, die für die Sm-Proteine codieren. Im Gegensatz dazu resultiert das Fehlen von pICln darin, dass die Sm-Proteine nicht in den Zusammenlagerungsweg eintreten können und statt dessen durch Autophagie degradiert werden. Wird die Degradation der Sm Proteine unterdrückt, komm es zu deren Delokalisation in der Zelle und Aggregation in unphysiologischen Strukturen. Die Daten offenbaren ein komplexes Regulationsnetzwerk, das die zelluläre U snRNP-Homöostase aufrechterhält und Zellen vor potentiell toxischer Proteinaggregation bewahrt.
2

The role of the adhesion and degranulation promoting adapter protein (ADAP) in platelet production / Die Rolle des adhesion and degranulation promoting adapter Proteins (ADAP) in der Thrombopoese

Spindler, Markus January 2020 (has links) (PDF)
Bone marrow (BM) megakaryocytes (MKs) produce platelets by extending proplatelets into sinusoidal blood vessels. Although this process is fundamental to maintain normal platelet counts in circulation only little is known about the regulation of directed proplatelet formation. As revealed in this thesis, ADAP (adhesion and degranulation promoting adapter protein) deficiency (constitutive as well as MK and platelet-specific) resulted in a microthrombocytopenia in mice, recapitulating the clinical hallmark of patients with mutations in the ADAP gene. The thrombocytopenia was caused by a combination of an enhanced removal of platelets from the circulation by macrophages and a platelet production defect. This defect led to an ectopic release of (pro)platelet-like particles into the bone marrow compartment, with a massive accumulation of such fragments around sinusoids. In vitro studies of cultured BM cell-derived MKs revealed a polarization defect of the demarcation membrane system, which is dependent on F-actin dynamics. ADAP-deficient MKs spread on collagen and fibronectin displayed a reduced F-actin content and podosome density in the lowest confocal plane. In addition, ADAP-deficient MKs exhibited a reduced capacity to adhere on Horm collagen and in line with that the activation of beta1-integrins in the lowest confocal plane of spread MKs was diminished. These results point to ADAP as a novel regulator of terminal platelet formation. Beside ADAP-deficient mice, three other knockout mouse models (deficiency for profilin1 (PFN1), Wiskott-Aldrich-syndrome protein (WASP) and Actin-related protein 2/3 complex subunit 2 (ARPC2)) exist, which display ectopic release of (pro)platelet-like particles. As shown in the final part of the thesis, the pattern of the ectopic release of (pro)platelet-like particles in these genetically modified mice (PFN1 and WASP) was comparable to ADAP-deficient mice. Furthermore, all tested mutant MKs displayed an adhesion defect as well as a reduced podosome density on Horm collagen. These results indicate that similar mechanisms might apply for ectopic release. / Die Megakaryozyten (MKn) des Knochenmarks produzieren Thrombozyten durch die Ausbildung und Verlängerung von Proplättchen in die sinusoidalen Blutgefäße. Obwohl dieser Prozess für die Aufrechterhaltung der normalen Thrombozytenzahl in der Blutzirkulation von grundlegender Bedeutung ist, ist über die Regulation der gerichteten Proplättchenbildung und damit der Thrombozytenproduktion nur wenig bekannt. Wie in dieser Arbeit gezeigt, führte sowohl die konstitutive als auch die MK- und Thrombozyten-spezifische Defizienz von ADAP (adhesion and degranulation promoting adapter protein) in Mäusen zu einer Mikrothrombozytopenie, ähnlich wie dies bei Patienten mit Mutationen im ADAP Gen zu beobachten ist. Die Thrombozytopenie wurde durch eine Kombination aus einer verstärkten Entfernung (clearance) von Thrombozyten aus der Zirkulation durch Makrophagen und einem Defekt in der Thrombozytenproduktion verursacht. Dieser Defekt führte zu einer ektopischen Freisetzung von Proplättchen-ähnlichen Partikeln ins Knochenmark und zur Anreicherung derartiger Fragmente um die Sinusoiden. In vitro-Studien an kultivierten MKn aus Zellen des Knochenmarks zeigten einen Polarisationsdefekt des Demarkationsmembransystems, welcher abhängig von der F-Aktin-Dynamik ist. ADAP-defiziente MKn wiesen nach Spreading auf Kollagen und Fibronektin einen reduzierten F-Aktin Gehalt und eine geringere Dichte von Podosomen in der untersten konfokalen Ebene auf. Zusätzlich zeigten ADAP-defiziente MKn beim Spreading Versuch eine verminderte Kapazität sich an Horm Kollagen anzuhaften, und die Aktivierung von beta1-Integrinen war in der untersten konfokalen Ebene von MKn reduziert. Diese Ergebnisse deuten darauf hin, dass ADAP ein wichtiges Protein im terminalen Schritt der Thrombozytenproduktion ist. Neben ADAP-defizienten Mäusen existieren drei weitere Knockout-Mausmodelle (für die Proteine: Profilin1 (PFN1), Wiskott-Aldrich-Syndrom-Protein (WASP) und Actin-related protein 2/3 complex subunit 2 (ARPC2)), die eine ektopische Freisetzung von Proplättchen-ähnlichen Partikeln zeigen. Wie im letzten Teil der Arbeit gezeigt, war das Muster der ektopischen Freisetzung von Proplättchen-ähnlichen Partikeln in diesen genetisch veränderten Mäusen (PFN1 und WASP) zu den ADAP-defizienten Mäusen vergleichbar. Darüber hinaus zeigten die MKn von den knockout Mäusen einen Adhäsionsdefekt sowie eine reduzierte Podosomendichte auf Horm Kollagen. Diese Ergebnisse deuten darauf hin, dass ähnliche Mechanismen für die Freisetzung von Proplättchen-ähnlichen Partikeln in das Knochenmark verantwortlich sein könnten.
3

USP28 regulates Squamous cell oncogenesis and DNA repair via ΔNp63 deubiquitination / USP28 reguliert Plattenepithelzell-Onkogenese und DNA-Reparatur über ΔNp63-Deubiquitinierung

Prieto García, Cristian January 2022 (has links) (PDF)
∆Np63 is a master regulator of squamous cell identity and regulates several signaling pathways that crucially contribute to the development of squamous cell carcinoma (SCC) tumors. Its contribution to coordinating the expression of genes involved in oncogenesis, epithelial identity, DNA repair, and genome stability has been extensively studied and characterized. For SCC, the expression of ∆Np63 is an essential requirement to maintain the malignant phenotype. Additionally, ∆Np63 functionally contributes to the development of cancer resistance toward therapies inducing DNA damage. SCC patients are currently treated with the same conventional Cisplatin therapy as they would have been treated 30 years ago. In contrast to patients with other tumor entities, the survival of SCC patients is limited, and the efficacy of the current therapies is rather low. Considering the rising incidences of these tumor entities, the development of novel SCC therapies is urgently required. Targeting ∆Np63, the transcription factor, is a potential alternative to improve the therapeutic response and clinical outcomes of SCC patients. However, ∆Np63 is considered “undruggable.” As is commonly observed in transcription factors, ∆Np63 does not provide any suitable domains for the binding of small molecule inhibitors. ∆Np63 regulates a plethora of different pathways and cellular processes, making it difficult to counteract its function by targeting downstream effectors. As ∆Np63 is strongly regulated by the ubiquitin–proteasome system (UPS), the development of deubiquitinating enzyme inhibitors has emerged as a promising therapeutic strategy to target ∆Np63 in SCC treatment. This work involved identifying the first deubiquitinating enzyme that regulates ∆Np63 protein stability. Stateof-the-art SCC models were used to prove that USP28 deubiquitinates ∆Np63, regulates its protein stability, and affects squamous transcriptional profiles in vivo and ex vivo. Accordingly, SCC depends on USP28 to maintain essential levels of ∆Np63 protein abundance in tumor formation and maintenance. For the first time, ∆Np63, the transcription factor, was targeted in vivo using a small molecule inhibitor targeting the activity of USP28. The pharmacological inhibition of USP28 was sufficient to hinder the growth of SCC tumors in preclinical mouse models. Finally, this work demonstrated that the combination of Cisplatin with USP28 inhibitors as a novel therapeutic alternative could expand the limited available portfolio of SCC therapeutics. Collectively, the data presented within this dissertation demonstrates that the inhibition of USP28 in SCC decreases ∆Np63 protein abundance, thus downregulating the Fanconi anemia (FA) pathway and recombinational DNA repair. Accordingly, USP28 inhibition reduces the DNA damage response, thereby sensitizing SCC tumors to DNA damage therapies, such as Cisplatin. / ∆Np63 ist ein Hauptregulator der Plattenepithelzellidentität und reguliert mehrere Signalwege, die entscheidend zur Entstehung von Plattenepithelkarzinomen (SCC) beitragen. Sein Beitrag zur Koordination der Expression von Genen, die an der Onkogenese, der epithelialen Identität, der DNA-Reparatur und der Genomstabilität beteiligt sind, wurde umfassend untersucht und charakterisiert. Für SCC ist die Expression von ∆Np63 eine wesentliche Voraussetzung, um den malignen Phänotyp zu erhalten. Darüber hinaus trägt ∆Np63 funktionell zur Entwicklung einer Krebsresistenz gegenüber Therapien bei, die DNA-Schäden induzieren. SCC-Patienten werden derzeit mit der gleichen konventionellen Cisplatin-Therapie behandelt, wie sie vor 30 Jahren behandelt worden wären. Im Gegensatz zu Patienten mit anderen Tumorentitäten ist das Überleben von SCC-Patienten begrenzt und die Wirksamkeit der aktuellen Therapien eher gering. Angesichts der steigenden Inzidenz dieser Tumorentitäten ist die Entwicklung neuer Therapien für das Plattenepithelkarzinom dringend erforderlich. Das Targeting von ∆Np63, dem Transkriptionsfaktor, ist eine potenzielle Alternative zur Verbesserung des therapeutischen Ansprechens und der klinischen Ergebnisse von SCC-Patienten. ∆Np63 gilt jedoch als „nicht medikamentös“. Wie bei Transkriptionsfaktoren häufig beobachtet, bietet ∆Np63 keine geeigneten Domänen für die Bindung von niedermolekularen Inhibitoren. ∆Np63 reguliert eine Vielzahl von verschiedenen Signalwegen und zellulären Prozessen, was es schwierig macht, seiner Funktion entgegenzuwirken, indem es nachgeschaltete Effektoren angreift. Da ∆Np63 stark durch das Ubiquitin-Proteasom-System (UPS) reguliert wird, hat sich die Entwicklung von deubiquitinierenden Enzyminhibitoren als vielversprechende therapeutische Strategie erwiesen, um ∆Np63 bei der Behandlung von Plattenepithelkarzinomen zu bekämpfen. Diese Arbeit beinhaltete die Identifizierung des ersten deubiquitinierenden Enzyms, das die Stabilität des ∆Np63-Proteins reguliert. Hochmoderne SCC-Modelle wurden verwendet, um zu beweisen, dass USP28 ∆Np63 deubiquitiniert, seine Proteinstabilität reguliert und Plattenepithel-Transkriptionsprofile in vivo und ex vivo beeinflusst. Dementsprechend hängt SCC von USP28 ab, um wesentliche Mengen des Np63-Proteinüberflusses bei der Tumorbildung und -erhaltung aufrechtzuerhalten. Zum ersten Mal wurde ∆Np63, der Transkriptionsfaktor, in vivo mit einem niedermolekularen Inhibitor gezielt, der auf die Aktivität von USP28 abzielt. Die pharmakologische Hemmung von USP28 war ausreichend, um das Wachstum von SCC-Tumoren in präklinischen Mausmodellen zu verhindern. Schließlich zeigte diese Arbeit, dass die Kombination von Cisplatin mit USP28-Inhibitoren als neuartige therapeutische Alternative das begrenzt verfügbare Portfolio an SCC-Therapeutika erweitern könnte. Zusammengefasst zeigen die in dieser Dissertation präsentierten Daten, dass die Hemmung von USP28 in SCC die Np63-Proteinhäufigkeit verringert, wodurch der Fanconi-Anämie (FA)-Signalweg und die rekombinatorische DNA-Reparatur herunterreguliert werden. Dementsprechend reduziert die Hemmung von USP28 die Reaktion auf DNA-Schäden und sensibilisiert dadurch SCC- Tumoren für DNA-Schädigungstherapien wie Cisplatin.
4

Application of electron cryomicroscopy for structural and functional studies on the mechanosensitive channels of small conductance / Kryoelektronenmikroskopie zur strukturellen und funktionellen Untersuchung der mechanosensitiven Kanäle kleiner Leitfähigkeit

Flegler, Vanessa Judith January 2022 (has links) (PDF)
Bacteria thrive and survive in many different environments, and as a result, they have developed robust mechanisms to adapt rapidly to alterations in their surroundings. The protection against osmotic forces is provided by mechanosensitive channels: their primary function is to maintain the integrity of the cell upon a hypoosmotic shock. The mechanosensitive channel of small conductance (MscS) is not only the smallest common structural unit of a diverse family that allows for a tailored response in osmoregulation; it is also the most intensively studied homologue. Mechanosensitive channels directly sense elevated membrane tension levels generated by increased pressure within the cell and open transiently. Escherichia coli has six paralogues that differ in their gating properties and the number of additional transmembrane (TM) helices. These TM helices, termed sensor paddles, are essential for sensing, as they directly contact the surrounding membrane; however, the role of the additional TM helices is still unclear. Furthermore, lipids occupy hydrophobic pockets far away from the membrane plane. A recent gating model for MscS states that increased membrane tension triggers the expulsion of lipids out of those pockets, modulating different conformational states of MscS. This model focuses on bound lipids, but it is still unclear to what extent the direct interaction with the membrane influences sensing and how relevant it is for the larger paralogues. In the herein described work, structural studies on two larger paralogues, the medium-sized channel YnaI and the large channel YbiO were realised using electron cryomicroscopy (cryo-EM). Lipids were identified in YnaI in the pockets in a similar position and orientation as in MscS, suggesting a conserved sensing mechanism. Moreover, the copolymer diisobutylene/maleic acid (DIBMA) allowed the extraction of artificially activated YnaI from plasma membranes, leading to an open-like form of this channel. This novel conformation indicated that the pore helices bend at a GGxGG motif during gating, which is unique among the Escherichia coli paralogues, concomitant with a structural reorganisation of the sensor paddles. Thus, despite a high similarity of their closed states, the gating mechanisms of MscS and YnaI are surprisingly different. Furthermore, the comparison of MscS, YnaI, and YbiO accentuates variations and similarities between the differently sized family members, implying fine-tuning of channel properties in the pore regions and the cytosolic lateral entry sides into the channel. Structural analyses of MscS reconstituted into different systems showed the advantages and disadvantages of certain polymers and detergents. The novel DIBMA copolymer and the more conventional amphiphilic polymers, so-called Amphipols, perturb contacting transmembrane helices or lead to their denaturation. Due to this observation, the obtained structures of YnaI must also be cautiously considered. The structures obtained in detergents resulted in unaffected channels; however, the applicability of detergents for MscS-like channels is limited by the increased required sample concentration. The role of lipids for gating MscS in the absence of a membrane was examined by deliberately removing coordinated lipid molecules from MscS using different amounts and kinds of detergent. The effects on the channel were inspected by cryo-EM. These experiments showed that closed MscS adopts the open conformation when it is enough delipidated by incubation with the detergent n-dodecyl-β-D-maltoside, and adding lipids to the open channel reverses this process. The results agree with the state-of-the-art model that the amount of lipid molecules in the pockets and grooves is responsible for the conformational state of MscS. Furthermore, incubation with the detergent lauryl maltose neopentyl glycol, which has stabilising and delipidating characteristics, resulted in a high-resolution structure of open MscS exhibiting an intricate network of ligands. Based on this structure, an updated gating model is proposed, which states that upon opening, lipids from the pockets migrate into the cytosolic membrane leaflet, while lipids from the periplasmic leaflet enter the grooves that arise between the sensor paddles. / Bakterien gedeihen und überleben in vielen unterschiedlichen Umgebungen. Daher haben sie robuste Mechanismen entwickelt, um sich rasch an Veränderungen in ihrer Umgebung anzupassen. Den Schutz vor osmotischen Kräften gewährleisten mechanosensitive Kanäle: Ihre Hauptfunktion besteht darin, die Unversehrtheit der Zelle bei einem hypoosmotischen Schock zu erhalten. Der mechanosensitive Kanal geringer Leitfähigkeit (mechanosensitive channel of small conductance, MscS) stellt nicht nur die kleinste gemeinsame Struktureinheit einer Familie von Kanälen dar, die eine maßgeschneiderte Antwort auf hypoosmotischen Stress ermöglicht; er ist auch das intensivste untersuchte Familienmitglied. Mechanosensitive Kanäle registrieren erhöhte Membranspannungen, die durch steigenden Druck innerhalb der Zelle entstehen, und öffnen vorübergehend. In Escherichia coli gibt es sechs paraloge Kanäle, die sich in ihren Öffnungs-Eigenschaften und der Anzahl zusätzlicher transmembranen Helices unterscheiden. Diese Helices, die als sensor paddles bezeichnet werden, sind für das Erfassen ansteigender Membranspannung unerlässlich, da sie direkt mit der umgebenden Membran in Kontakt stehen; die Rolle der zusätzlichen transmembranen Helices ist jedoch noch nicht geklärt. Außerdem sitzen Lipide in hydrophoben Taschen weit entfernt von der Membran. Ei kürzlich vorgeschlagenes Öffnungs-Modell für MscS besagt, dass eine erhöhte Membranspannung zum Ausstoß der Lipide aus diesen Taschen führt, wodurch verschiedene Konformationszustände von MscS moduliert werden. Dieses Modell konzentriert sich auf die Rolle der Lipide, aber es ist noch immer unklar, inwieweit die direkte Wechselwirkung mit der Membran das Wahrnehmen der Membranspannung beeinflusst und welche Bedeutung sie für die größeren paralogen Kanäle hat. In der vorliegenden Arbeit wurden Strukturstudien an zwei größeren paralogen Kanälen, dem mittelgroßen Kanal YnaI und dem großen Kanal YbiO, mittels Kryoelektronenmikroskopie (Kryo-EM) durchgeführt. In YnaI wurden Lipide in den Taschen in ähnlicher Position und Ausrichtung wie in MscS gefunden, was auf einen konservierten Mechanismus zur Wahrnehmung der Membranspannung schließen lässt. Darüber hinaus ermöglichte das Copolymer Diisobutylen/Maleinsäure (DIBMA) die Isolation von artifiziell aktiviertem YnaI aus Plasmamembranen, was zur Struktur einer anscheinend offenen Form dieses Kanals führte. Diese neuartige Konformation deutet darauf hin, dass sich die Porenhelices während des Öffnens im Bereich eines GGxGG-Motiv biegen, das unter den paralogen Kanälen von Escherichia coli einzigartig ist und mit einer strukturellen Reorganisation der sensor paddles einhergeht. Trotz der großen Ähnlichkeit ihrer geschlossenen Zustände sind die Öffnungs-Mechanismen von MscS und YnaI also überraschend unterschiedlich. Darüber hinaus zeigte der Vergleich von MscS, YnaI und YbiO Unterschiede und Gemeinsamkeiten zwischen den unterschiedlich großen Familienmitgliedern. Diese Erkenntnissse deuten auf eine Feinabstimmung der Kanaleigenschaften im Bereich der Pore und an den zytosolischen seitlichen Eingängen der Kanäle hin. Strukturanalysen von MscS, in verschiedene Systeme rekonstituiert, zeigten die Vor- und Nachteile von ausgewählten Polymeren und Detergenzien. Das neuartige DIBMA-Copolymer und herkömmlichere amphiphile Polymere, die sogenannten Amphipole, stören die kontaktierenden transmembranen Helices oder führen zu deren Denaturierung. Im Zuge dieser Beobachtung müssen auch die erhaltenen Strukturen von YnaI vorsichtig betrachtet werden. Die in Detergenzien erhaltenen Strukturen zeigen unbeeinträchtigte Kanäle; die Anwendbarkeit von Detergenzien für MscS-ähnliche Kanäle wird jedoch durch die erhöhte erforderliche Proteinkonzentration eingeschränkt. Die Rolle der Lipide für das Öffnen von MscS wurde in Abwesenheit einer Membran untersucht, indem koordinierte Lipidmoleküle mit verschiedenen Mengen und Arten von Detergenzien bewusst von MscS entfernt wurden. Die Auswirkungen auf den Kanal wurden mittels Kryo-EM untersucht. Dabei zeigte sich, dass die geschlossene Form von MscS in die offene Konformation übergeht, wenn es durch Inkubation mit dem Detergenz n-Dodecyl-β-D-Maltosid ausreichend delipidiert wird, und dass die Zugabe von Lipiden zum offenen Kanal diesen Prozess wieder umkehrt. Die Ergebnisse stimmen mit dem Öffnungs-Modell überein, das besagt, dass die Menge der Lipidmoleküle in den Taschen und Furchen für den Konformationszustand von MscS verantwortlich ist. Darüber hinaus führte die Inkubation mit dem Detergenz Laurylmaltose-neopentylglykol, das sowohl stabilisierende als auch delipidierende Eigenschaften hat, zu einer hochaufgelösten Struktur des offenen MscS, die ein ausgeprägtes Netzwerk von Liganden zeigt. Auf der Grundlage dieser Struktur wird ein aktualisiertes Öffnungs-Modell vorgeschlagen, das besagt, dass bei der Öffnung Lipide aus den Taschen in die zytosolische Lipidschicht der Membran wandern, während Lipide aus der periplasmatischen Lipidschicht in die Furchen gelangen, die zwischen den sensor paddles entstehen.
5

The role of WASH complex subunit Strumpellin in platelet function / Die Rolle der WASH-Komplexuntereinheit Strumpellin in der Thrombozytenfunktion

Reil, Lucy Honor January 2023 (has links) (PDF)
Strumpellin is a member of the highly conserved pentameric WASH complex, which stimulates the Arp2/3 complex on endosomes and induces the formation of a branched actin network. The WASH complex is involved in the formation and stabilisation of endosomal retrieval subdomains and transport carriers, into which selected proteins are packaged and subsequently transported to their respective cellular destination, e.g. the plasma membrane. Up until now, the role of Strumpellin in platelet function and endosomal trafficking has not been researched. In order to examine its role, a conditional knockout mouse line was generated, which specifically lacked Strumpellin in megakaryocytes and platelets. Conditional knockout of Strumpellin resulted in only a mild platelet phenotype. Loss of Strumpellin led to a decreased abundance of the αIIbβ3 integrin in platelets, including a reduced αIIbβ3 surface expression by approximately 20% and an impaired αIIbβ3 activation after platelet activation. The reduced surface expression of αIIbβ3 was also detected in megakaryocytes. The expression of other platelet surface glycoproteins was not affected. Platelet count, size and morphology remained unaltered. The reduction of αIIbβ3 expression in platelets resulted in a reduced fibrinogen binding capacity after platelet activation. However, fibrinogen uptake under resting conditions, although slightly delayed, as well as overall fibrinogen content in Strumpellin-deficient platelets were comparable to controls. Most notably, reduced αIIbβ3 expression did not lead to any platelet spreading and aggregation defects in vitro. Furthermore, reduced WASH1 protein levels were detected in the absence of Strumpellin. In conclusion, loss of Strumpellin does not impair platelet function, at least not in vitro. However, the data demonstrates that Strumpellin plays a role in selectively regulating αIIbβ3 surface expression. As a member of the WASH complex, Strumpellin may regulate αIIbβ3 recycling back to the platelet surface. Furthermore, residual WASH complex subunits may still assemble and partially function in the absence of Strumpellin, which could explain the only 20% decrease in αIIbβ3 surface expression. Nonetheless, the exact mechanism still remains unclear. / Strumpellin ist Teil des hoch konservierten, pentameren WASH-Komplexes, der den Arp2/3-Komplex auf Endosomen aktiviert und somit die Bildung eines verzweigten Aktinnetzwerkes ermöglicht. Der WASH-Komplex beteiligt sich an der Bildung und Sta-bilisierung von endosomalen Retrieval-Subdomänen und Transportvesikel. In letztere werden Proteine verpackt und anschließend zu ihrem Bestimmungsort innerhalb der Zelle, z.B. der Zellmembran, transportiert. Die Rolle von Strumpellin in der Thrombozytenfunktion und im endosomalen Transport wurde bislang noch nicht untersucht. Hierfür wurde eine konditionale Knockout-Mauslinie generiert, die weder in Megakaryozyten noch in Thrombozyten Strumpellin aufwies. Der konditionale Knockout von Strumpellin hatte nur einen milden Thrombozytenphänotyp zur Folge. Der Verlust von Strumpellin resultierte in einem verminderten Gesamt-proteingehalt von αIIbβ3-Integrin in Thrombozyten, einschließlich einer ca. 20-prozentigen Reduktion der Oberflächenexpression von αIIbβ3 und einer verringerten αIIbβ3-Aktivierung nach Thrombozytenaktivierung. Die reduzierte Oberflächenexpression von αIIbβ3 konnte auch in Megakaryozyten nachgewiesen werden. Die Expression anderer Oberflächenglykoproteine war nicht betroffen. Thrombozytenzahl, -größe und -morphologie blieben unverändert. Die reduzierte αIIbβ3-Expression in Thrombozyten führte zu einer verminderten Fibrinogenbindungskapazität nach Thrombozytenaktivierung. Die Fibrinogenaufnahme unter ruhenden Bedingungen, trotz initialer Verzögerung, und der Gesamtproteingehalt von Fibrinogen waren hingegen vergleichbar mit Kontrollproben. Interessanterweise verursachte die reduzierte αIIbβ3-Expression keine in vitro Spreading- und Aggregationsdefekte der Thrombozyten. Ein verminderter WASH1-Proteingehalt konnte ebenfalls nachgewiesen werden. Abschließend lässt sich sagen, dass der Verlust von Strumpellin die Thrombozytenfunktion, zumindest in vitro, nicht beeinträchtigt. Die Daten zeigen jedoch, dass Strumpellin eine selektive Rolle in der Regulierung der αIIbβ3-Oberflächenexpression spielt. Als WASH-Komplexuntereinheit könnte Strumpellin möglicherweise das Recycling von αIIbβ3 zurück zur Thrombozytenoberfläche regulieren. Zudem könnten verbleibende WASH-Komplexuntereinheiten trotz fehlendem Strumpellin weiterhin einen funktions- fähigen Komplex bilden. Dies könnte unter anderem die nur 20-prozentige Reduktion der αIIbβ3 Oberflächenexpression erklären. Der genaue Mechanismus ist jedoch noch nicht bekannt.
6

Untersuchung von Dihydroisochinolinonderivaten als mögliche Inhibitoren von Hsc70 / Analyzing dihydroisoquinolinone derivatives as potential inhibitors of Hsc70

Plank, Christina January 2019 (has links) (PDF)
Einhergehend mit einer steigenden Lebenserwartung nimmt auch die Zahl der am Multiplen Myelom Erkrankten zu. Bis dato gibt es nur wenige Therapieansätze dieser selten vorkommenden Blutkrebserkrankung. Im Zusammenhang mit der Entstehung des Multiplen Myeloms stehen vor allem zwei bedeutende Hitzeschockproteine: Hsp90 und Hsp70. Beide haben die Aufgabe, Zellen vor Apoptose zu schützen. In proliferierenden Plasmazellen ist eine Überexpression an Hsp90 zu beobachten. Entwickelte Inhibitoren führten zwar zu einer verminderten Hsp90-Aktivität, allerdings wurde diese durch eine vermehrte Expression von Hsp70 kompensiert, weshalb Myelomzellen weiterhin proliferierten. Aus diesem Grund bietet sich Hsp70 als weiterer Angriffspunkt in der Therapierung des Multiplen Myeloms an. Die bislang entwickelten Inhibitoren binden entweder an die Nukleotid- oder Substratbindedomäne. Da beide Stellen unspezifisch sind, wurden durch virtuelles Screening potenzielle Inhibitoren für Hsp70 identifiziert, welche in vitro und in vivo tatsächlich Effekte hinsichtlich der Herunterregulierung von Hsp70 zeigten. Ob die entwickelten Substanzen jedoch direkt an Hsp70 binden, war die Fragestellung der vorliegenden Arbeit. In dieser Arbeit wurde untersucht, inwiefern die entwickelten Inhibitoren an Hsp70 binden und dieses inhibieren. Die humane Hsp70-Familie besitzt sechzehn Mitglieder, die alle ähnliche Aufgaben und Strukturmerkmale aufweisen. Für die durchgeführten Versuche wurde die Hsp70-Isoform Hsc70 verwendet. In einem Protein-Ligand-Assay konnte gezeigt werden, dass die meisten Verbindungen durch Aggregatbildung zu einer Inhibition von Hsc70 führten. Durch Zugabe von Detergenz konnten die gebildeten Aggregate aufgebrochen und so der Inhibitionseffekt aufgehoben bzw. deutlich reduziert werden. Damit konnte gezeigt werden, dass die in Zell- und Mausversuchen beobachteten Effekte vermutlich nicht auf eine direkte Inhibition von Hsc70 zurückzuführen sind. Ob diese Effekte nun ebenfalls auf Aggregatbildung beruhen oder aber ein anderes Protein als das vermutete Hsc70 inhibiert wird, was über eine Signalkaskade zur Inhibition von Hsc70 führt, wäre eine interessante Fragestellung für weitere Untersuchungen. Da sowohl in NMR-Versuchen als auch dem durchgeführten Protein-Ligand-Assay gezeigt werden konnte, dass die vormals als potenzielle Inhibitoren entwickelten Verbindungen nur schwach aktiv sind, wurde durch Fragment-basierte Ansätze eine andere Bindestelle für mögliche Inhibitoren identifiziert. Hierbei konnte N-Acetyl-D-Glucosamin in der Nukleotidbindedomäne von Hsc70 detektiert werden. Hieraus könnten sich neue Ansätze zur Entwicklung neuartiger in silico entwickelter Hsc70-Inhibitoren ergeben. Ausgangspunkt für die Docking-Studien zur Entwicklung neuer Hsp70-Inhibitoren war die Kristallstruktur von bHsc70 ED 1-554, einer trunkierten Doppelmutante des nativen Hsc70. Bis dato ist diese 554 Aminosäuren umfassende Mutante die einzige Hsc70-Variante von der die Zweidomänenstruktur kristallisiert werden konnte. Für dieses Konstrukt wurde zunächst ein optimiertes Aufreinigungsprotokoll entwickelt, um dann Kristallisationsversuche mit ausgewählten AH-Verbindungen, die in den Docking-Studien entwickelt wurden, durchzuführen. Hierbei konnte jedoch keine Bindung festgestellt werden. Die Kristallisation mit Ver-155008, einem bekannten Hsc70-Inhibitor, führte jedoch zur ersten Zweidomänenstruktur von Hsc70 mit gebundenem Ver-155008. Neben der obigen Fragestellung wurde außerdem untersucht, wie funktional aktiv das trunkierte Hsc70-Konstrukts ist. Hier zeigte sich, dass aufgrund des fehlenden C-Terminus zwar eine geringe Aktivität von 30 % im Vergleich zur Volllänge zu beobachten war. Für eine nahezu vollständige Rückfaltungsaktivität ist aber der C-Terminus essentiell. Weiterhin konnte in ITC-Versuchen der Kd-Wert von Ver-155008 an die verwendete Mutante ermittelt werden, der dem bereits bekannten Kd von Ver-155008 an das native Hsc70 ähnlich ist. / Coming along with an increasing life span, the number of multiple myeloma incidences permanently increases. By now, there is no possibility to cure this rare blood cancer disease. In multiple myeloma, there are two major proteins playing a crucial role in its development: Hsp70 and Hsp90. Both prevent cells from apoptosis. In proliferating plasma cells, Hsp90 is overexpressed. Inhibitors for Hsp90, however, led to an overexpression of Hsp70. Therefore, Hsp70 seems to be an attractive target in multiple myeloma. Developed Hsp70 inhibitors are likely to bind either to the nucleotide or substrate binding domain. Since both domains are likely unspecific, new inhibitors were designed by virtual screening which indeed showed inhibition effects on Hsp70 in vitro and in vivo. Nevertheless, the question had to be answered whether these compounds directly bind to Hsp70 or if the expression of Hsp70 is downregulated through a signal cascade in the cell. In this thesis, it was analyzed whether and how in silico designed and in cell-based assays active compounds inhibit Hsp70. The human Hsp70 family comprises 16 members which have similar structures and functions in the cell. For all conducted experiments, Hsp70 isoform 8, also known as Hsc70, was used. In a protein-ligand assay, it was shown that the compounds inhibit Hsc70 due to aggregate formation. Upon the addition of detergent, aggregates were broken down and the inhibition effect was reversed. Therefore the effects that have been observed in cell and mouse experiments are most likely not due to a direct inhibition of Hsc70. Whether these effects are due to aggregate formation or whether another protein was inhibited which then led to a downregulation of Hsc70 via a signal cascade, is a challenging question for further studies. Since it was shown both in protein-ligand assays and NMR experiments that the favored compounds were only weakly active, fragment-based screening was used to find a new core structure for further design studies. N-acetyl-D-glucosamine was found to bind to the NBD of Hsc70 which now might serve as a starting point for the development of novel Hsp70 inhibitors. For all docking studies that have been conducted to develop novel Hsc70 inhibitors, the crystal structure of bHsc70 ED 1-554 was used, which is a truncated and double-mutated version of the native Hsc70. This construct has been the only crystal structure so far of which the two-domain structure of Hsc70 has been determined. For this construct a purification protocol was optimized to use bHsc70 ED 1-554 for crystallization experiments to determine the binding of the in silico developed AH compounds. Although no binding of these compounds could be observed, the two-domain structure of bHsc70 ED 1-554 with bound Ver-155008, a known Hsc70 inhibitor, could be determined. Besides, the activity of this truncated Hsc70 double-mutant was analyzed. Due to the lacking C terminus, which is important for the interaction with client proteins, a reduced activity of about 30 % was observed. Nevertheless, in ITC experiments the Kd value of the binding of Ver-155008 to bHsc70 ED 1-554 showed that the affinity is similar to that of native Hsc70.
7

Rekonstitution des Chromophors und der Funktion von Bakteriorhodopsin aus Halobacterium halobium

Christoffel, Volker January 1976 (has links) (PDF)
Ein Modell der lichtgetriebenen Protonenpumpe Bakteriorhodopsin postulierte die direkte Beteiligung der Wasserstoffe in der 4-Stellung des Cyclohexenringes des Retinalchromophors an dem Vorgang der Protonenverschiebung. Mittels Blockaden der Retroform-Bildung von Retinal durch chemische Modifizierungen des Cyclohexenringes (4-Hydroxy-Retinal, 5,6-Epoxy-Retinal) konnten nach Einbau der modifizierten Moleküle in die isolierte Purpurmembran und nach Zugabe zu Halobakterien mit unterdrückter Retinalsynthese die direkte Beteiligung des Cyclohexenringes an der Protonenpumpe mit großer Wahrscheinlichkeit ausgeschlossen werden.
8

Minor differences cause major effects: How differential oligomerization regulates the activities of USP25 and USP28 / Kleine Unterschiede mit großer Auswirkung: Wie differenzielle Oligomerisierung die Aktivitäten von USP25 und USP28 reguliert

Klemm, Theresa Antonia January 2020 (has links) (PDF)
Deubiquitinases are regulators of the ubiquitin proteasome system that counteract the ubiquitination cascade by removing ubiquitin from substrates and cleaving ubiquitin chains. Due to their involvment in various important pathways, they are associated with several diseases and may thus present promising drug targets. The two related ubiquitin specific proteases USP25 and USP28 share a highly conserved amino acid sequence but perform distinct biological functions. USP28 plays roles in cell cycle regulation and was also linked to several types of cancer. It adopts oncogenic functions by rescuing the oncoproteins MYC and JUN from proteasomal degradation, which is induced by the E3-ligase SCF (FBW7). Opposingly, USP28 also regulates the stability of the tumor suppressor FBW7 itself. USP25 contributes to a balanced innate immune system by stabilizing TRAF3 and TRAF6 and lately was found to promote Wnt-signaling by deubiquitinating TNKS. Due to the high level of identity of both proteases, a recent attempt to inhibit USP28 led to cross reactivity against USP25. In our study, we characterized both USP25 and USP28 structurally and functionally using x-ray crystallography, biochemical as well as biophysical approaches to determine similarities and differences that can be exploited for the development of specific inhibitors. The crystal structure of the USP28 catalytic domain revealed a cherry-couple like dimer that mediates self-association by an inserted helical subdomain, the USP25/28 catalytic domain inserted domain (UCID). In USP25, the UCID leads to formation of a tetramer composed of two interlinked USP28-like dimers. Structural and functional analysis revealed that the dimeric USP28 is active, whereas the tetrameric USP25 is auto inhibited. Disruption of the tetramer by a cancer-associated mutation or a deletion-variant activates USP25 through dimer formation in in vitro assays and leads to an increased stability of TNKS in cell studies. Furthermore, in vitro data showed that neither ubiquitin nor substrate binding led to the activation of the USP25 tetramer construct. With the structure of the C-terminal domain of USP25, we determined the last unknown region in the enzyme as a separately folded domain that mediates substrate interactions. Combined the structures of the USP25 and USP28 catalytic domains and the functional characterization of both enzymes provide novel insights into the regulation of USPs by oligomerization. Furthermore, we identified individual features of each protease that might be explored for the development of specific small molecule inhibitors. / Deubiquitinasen sind Regulatoren des Ubiquitin-Proteasom-Systems, welche der Ubiquitin-Kaskade entgegenwirken, in dem sie Ubiquitin von Substraten entfernen oder Ubiquitinketten schneiden. Durch ihr umfangreiches Vorkommen in wichtigen Signalwegen, werden sie häufig mit Krankheiten assoziiert und gelten daher als vielversprechender Ansatzpunkt für die Entwicklung von Arzneimitteln. Die zwei verwandten Ubiquitin-spezifischen Proteasen USP25 und USP28 zeichnen sich durch eine sehr hohe Konservierung der Aminosäuresequenz aus, unterscheiden sich jedoch in ihren biologischen Funktionen. USP28 ist in die Regulierung des Zellzyklus involviert und wurde auch mit mehreren Krebsarten in Verbindung gebracht. Es zeigt onkogene Merkmale, indem es die Onkoproteine MYC und JUN vor dem proteasomalen Abbau schützt, welcher durch die E3-Ligase SCF (FBW7) induziert wird. Im Widerspruch dazu reguliert USP28 jedoch auch die Stabilität des Tumorsuppressors FBW7 selbst. USP25 hingegen stabilisiert TRAF3 und TRAF6 und trägt damit zum Gleichgewicht des angeborenen Immunsystems bei. Außerdem wurde USP25 erst kürzlich eine Funktion nachgewiesen, die den Wnt-Signalweg fördert, indem es TNKS deubiquitiniert. Die hohe Sequenzidentität beider Proteasen führte bisher dazu, dass alle Inhibitoren, die entwickelt wurden, um USP28 spezifisch zu hemmen, auch eine Kreuzreaktion mit USP25 aufweisen. In unseren Studien, haben wir Röntgenkristallographie, sowie biochemische und biophysikalische Methoden angewandt, um strukturelle und funktionelle Ähnlichkeiten und Unterschiede zwischen USP25 und USP28 zu identifizieren, die bei der Entwicklung von spezifischen Inhibitoren genutzt werden können. Die Kristallstruktur der katalytischen Domäne von USP28 zeigt ein Kirsch-ähnliches Dimer, welches, vermittelt durch die Insertion einer helikalen Unterdomäne, der USP25/USP28 catalytic domain inserted domain (UCID), mit sich selbst assoziiert. In USP25, führt die UCID zu der Bildung eines Tetramers, welches aus zwei USP28-ähnlichen Dimeren besteht. Strukturelle und funktionelle Untersuchungen zeigten, dass ein USP28 Dimer aktiv ist, wohingegen ein tetrameres USP25 auto-inhibiert vorliegt. In in vitro Experimenten führte die Zerschlagung des USP25 Tetramers, durch eine Krebs-assoziierte Mutation oder eine Deletionsvariante, zu einem Dimer und damit zu einer Aktivierung von USP25. In Zell-studien, induzierten die USP25 Dimere eine erhöhte Stabilität des Substrates TNKS. Außerdem zeigten die in vitro Daten, dass weder Ubiquitin noch die Substratbindung unsere USP25 Konstrukte aktivieren können. Durch die strukturelle Charakterisierung der C-terminalen Domäne von USP25, konnten wir den letzten bisher unbekannten Bereich des Enzyms als eine separat gefaltete Domäne beschreiben, welche Substratinteraktionen vermittelt. Sowohl durch die Strukturen, der katalytischen Domänen von USP25 und USP28, als auch durch die funktionelle Charakterisierung beider Enzyme konnten neue Erkenntnisse zu der Regulation von USPs durch Oligomerisierung gewonnen werden. Außerdem konnten wir individuelle Merkmale in beiden Proteasen identifizieren, die genutzt werden können, um die Entwicklung von spezifischen kleinmolekularen Inhibitoren voran zu bringen.
9

Biochemical and functional characterization of DHX30, an RNA helicase linked to neurodevelopmental disorder / Biochemische und funktionelle Charakterisierung von DHX30, einer RNA Helikase assoziiert mit neurologischen Entwicklungsstörungen

Huber, Hannes January 2023 (has links) (PDF)
RNA helicases are key players in the regulation of gene expression. They act by remodeling local RNA secondary structures as well as RNA-protein interactions to enable the dynamic association of RNA binding proteins to their targets. The putative RNA helicase DHX30 is a member of the family of DEAH-box helicases with a putative role in the ATP-dependent unwinding of RNA secondary structures. Mutations in the DHX30 gene causes the autosomal dominant neuronal disease “Neurodevelopmental Disorder with severe Motor Impairment and Absent Language” (NEDMIAL;OMIM#617804). In this thesis, a strategy was established that enabled the large-scale purification of enzymatically active DHX30. Through enzymatic studies performed in vitro, DHX30 was shown to act as an ATP-dependent 3’ → 5’ RNA helicase that catalyzes the unwinding of RNA:RNA and RNA:DNA substrates. Using recombinant DHX30, it could be shown that disease-causing missense mutations in the conserved helicase core caused the disruption of its ATPase and helicase activity. The protein interactome of DHX30 however, was unchanged indicating that the pathogenic missense-mutations do not cause misfolding of DHX30, but rather specifically affect its catalytic activity. DHX30 localizes predominantly in the cytoplasm where it forms a complex with ribosomes and polysomes. Using a cross-linking mass spectrometry approach, a direct interaction of the N-terminal double strand RNA binding domain of DHX30 with sites next to the ribosome’s mRNA entry channel and the subunit interface was uncovered. RNA sequencing of DHX30 knockout cells revealed a strong de-regulation of mRNAs involved in neurogenesis and nervous system development, which is in line with the NEDMIAL disease phenotype. The knockdown of DHX30 results in a decreased 80S peak in polysome gradients, indicating that DHX30 has an effect on the translation machinery. Sequencing of the pool of active translating mRNAs revealed that upon DHX30 knockout mainly 5’TOP mRNAs are downregulated. These mRNAs are coding for proteins of the translational machinery and translation initiation factors. This study identified DHX30 as a factor of the translation machinery that selectively impacts the expression of a subset of proteins and provides insight on the etiology of NEDMIAL. / RNA-Helikasen sind Schlüsselfaktoren bei der Regulierung der Genexpression. Sie remodellieren RNA-Sekundärstrukturen und RNA-Protein Interaktionen und dadurch die dynamische Interaktion von RNA-bindenden Proteinen mit deren Substraten. Die putative RNA-Helikase DHX30 ist Mitglied der DEAH-box Helikasen, welche in Abhängigkeit von ATP in der Lage sind, RNA-Sekundärstrukturen aufzulösen. Mutationen im DHX30 Gen verursachen die autosomal-dominante neuronale Krankheit “Neurodevelopmental Disorder with Severe Motor Impairment and Absent Language” (NEDMIAL; OMIM#617804). In dieser Arbeit wurde eine Aufreinigungs-Strategie etabliert, um im präparativen Maßstab enzymatisch-aktives DHX30 Protein zu gewinnen. Mit dem aufgereinigten Protein wurden enzymatische Experimente durchgeführt, wodurch DHX30 als ATP abhängige RNA-Helikase charakterisiert wurde. Es konnte gezeigt werden, dass es in der Lage ist RNA:RNA sowie RNA:DNA Substrate in einer 3’ → 5’ Richtung zu entwinden. Mithilfe des rekombinanten Proteins konnte weiter gezeigt werden, dass krankheitsverursachende Mutationen im hoch-konservierten Helikase-Kern von DHX30 zur Beeinträchtigung der ATPase und Helikase-Aktivität des Proteins führen. Des Weiteren ergab sich, dass das Protein-Interaktom der DHX30 Mutanten sich im Vergleich zum Wildtyp nicht verändert, was impliziert, dass die Mutationen nicht zu einer Missfaltung des Proteins, sondern dessen katalytische Aktivität inhibieren. DHX30 lokalisiert hauptsächlich im Cytoplasma und bildet dort einen Proteinkomplex mit Ribosomen und Polysomen. Mittels eines cross-linking mass spectrometry-Experiments konnte eine direkte Interaktion von DHX30 mit Stellen der ribosomalen mRNA Eintrittsstelle und dem Interface der ribosomalen Untereinheiten identifiziert werden. Die RNA Sequenzierung von DHX30-deletieren Zellen zeigte eine starke Deregulierung von mRNAs welche für die Entwicklung des Nervensystems und in der Neurogenese eine Rolle spielen, was mit dem Krankheits-Phänotyp von NEDMIAL korreliert. Weiter konnte gezeigt werden, dass es in DHX30-deletierten Zellen zur Abnahme von 80S Ribosomen in Polysomen-Gradienten kommt, was auf eine Funktion von DHX30 während der Translation schließen lässt. Durch das Sequenzieren aktiv translatierender mRNAs zeigte sich, dass der KO von DHX30 zur Abnahme von 5‘TOP mRNAs führt. Diese mRNAs kodieren für Proteine der Translations-Maschinerie und für Translations-Initiations Faktoren. Diese Studie identifiziert DHX30 als Faktor der Translations-Maschinerie, der selektiv die Expression einer mRNA-Untergruppe beeinflusst und Einblicke in die Ätiologie von NEDMIAL liefert.
10

Development of anti-TNF antibody-gold nanoparticles (anti-TNF-AuNPs) / Entwicklung von Anti-TNF-Antikörper-Gold-Nanopartikeln

Aido, Ahmed January 2024 (has links) (PDF)
Gold nanoparticles of diameter ca. 60 nm have been synthesized based on Turkevich and Frens protocols. We have demonstrated that the carboxyl-modified gold nanoparticles can be coupled covalently with antibodies (Ab) of interest using the EDC/NHS coupling procedure. Binding studies with Ab-grafted AuNPs and GpL fusion proteins proved that conjugation of AuNPs with antibodies enables immobilization of antibodies with preservation of a significant antigen binding capacity. More importantly, our findings showed that the conjugation of types of anti-TNF receptors antibodies such as anti-Fn14 antibodies (PDL192 and 5B6) (Aido et al., 2021), anti-CD40, anti-4-1BB and anti-TNFR2 with gold nanoparticles confers them with potent agonism. Thus, our results suggest that AuNPs can be utilized as a platform to immobilize anti-TNFR antibodies which, on the one hand, helps to enhance their agonistic activity in comparison to “free” inactive antibodies by mimicking the effect of cell-anchored antibodies or membrane-bound TNF ligands and, on the other hand, allows to develop new generations of drug delivery systems. These constructs are characterized with their biocompatibility and their tunable synthesis process. In a further work part, we combined the benefits of the established system of Ab-AuNPs with materials used widely in the modern biofabrication approaches such as the photo-crosslinked hydrogels, methacrylate-modified gelatin (GelMA), combined with embedded variants of human cell lines. The acquired results demonstrated clearly that the attaching of proteins like antibodies to gold nanoparticles might reduce their release rate from the crosslinked hydrogels upon the very low diffusion of gold nanoparticles from the solid constructs to the surrounding medium yielding long-term local functioning proteins-attached particles. Moreover, our finding suggests that hydrogel-embedded AuNP-immobilized antibodies, e.g. anti-TNFα-AuNPs or anti-IL1-AuNPs enable local inhibitory functions, To sum up, our results demonstrate that AuNPs can act as a platform to attach anti-TNFR antibodies to enhance their agonistic activity by resembling the output of cell-anchoring or membrane bounding. Gold nanoparticles are considered, thus, as promising tool to develop the next generation of drug delivery systems, which may contribute to cancer therapy. On top of that, the embedding of anti-inflammatory-AuNPs in the biofabricated hydrogel presents new innovative strategy of the treatment of autoinflammatory diseases. / Gold-Nanopartikel mit einem Durchmesser von ca. 60 nm wurden auf Basis der Turkevich- und Frens-Protokolle synthetisiert. Bindungsstudien mit Ab-verankerten AuNPs und GpL-Fusionsproteinen haben gezeigt, dass die Konjugation von AuNPs mit Antikörpern die Immobilisierung von Antikörpern mit Erhaltung einer signifikanten Antigenbindungs-Kapazität ermöglicht. Noch wichtiger ist, dass unsere Ergebnisse zeigen, dass die Konjugation von Typen von Antikörpern gegen TNFRs wie anti-Fn14-Antikörper (PDL192 und 5B6), anti-CD40, anti-4-1BB und anti-TNFR2 mit Gold-Nanopartikeln ihnen eine starke agonistische Wirkung verleiht. Unsere Ergebnisse legen nahe, dass AuNPs als Plattform genutzt werden können, um Antikörper gegen TNFR zu immobilisieren, was einerseits dazu beiträgt, ihre agonistische Aktivität im Vergleich zu "freien" inaktiven Antikörpern zu erhöhen, indem sie die Wirkung von zellgebundenen Antikörpern oder membranverankerten TNF-Liganden nachahmen und andererseits die Entwicklung neuer Generationen von Wirkstoffabgabe Systemen ermöglicht. Diese Konstrukte zeichnen sich durch ihre Biokompatibilität und ihren einstellbaren Syntheseprozess aus. In einem weiteren Teil der Arbeit haben wir die Vorteile des etablierten Systems von Ab-AuNPs mit Materialien kombiniert, die in modernen Biofabrikationsansätzen weit verbreitet sind, nämlich Hydrogele, z.b. methacrylatmodifiziertes Gelatine (GelMA), kombiniert mit eingebetteten Varianten von menschlichen Zelllinien. Die erzielten Ergebnisse zeigten deutlich, dass die Anbindung von Proteinen wie Antikörpern an Gold-Nanopartikel ihre Freisetzung aus den vernetzten Hydrogelen reduzieren könnte, da die Diffusion von Gold-Nanopartikeln aus den festen Konstrukten in das umgebende Medium sehr gering ist und so langfristig Konstrukte mit lokalem Proteine load - erzeugt werden können. Darüber hinaus legt unser Befund nahe, dass in das Hydrogel eingebettete AuNP-immobilisierte Antikörper wie Anti-TNFα-AuNPs oder Anti-IL1-AuNPs eine lokal Immunsuppression erlauben. Diese können als vielversprechende Ansätze betrachtet werden, um verschiedene Arten von Autoimmunerkrankungen zu behandeln. Zusammenfassend zeigen unsere Ergebnisse, dass AuNPs als Plattform dienen können, um Anti-TNFR-Antikörper anzubinden und ihre agonistische Aktivität zu erhöhen. Goldnanopartikel werden daher als vielversprechendes Werkzeug zur Entwicklung der nächsten Generation von Wirkstofftransportsystemen angesehen, die zur Krebstherapie beitragen können. Darüber hinaus stellt die Einbettung von entzündungshemmenden-AuNPs in das biofabrizierte Hydrogel eine neue innovative Strategie für die Behandlung von autoinflammatorischen Erkrankungen dar.

Page generated in 0.4166 seconds