Les modèles numériques d'océans régionaux tridimensionnels sont basés sur la résolution des équations primitives et utilisent pour la plupart des méthodes de résolution eulérienne de type différences finies sur des grilles décalées. Ces modèles doivent représenter fidèlement les transports et transferts d'énergie. L'amélioration de ces modèles numériques exige donc (i) l'identification des processus prépondérants, notamment en terme de dissipation, dans ces transferts et (ii) la construction de méthodes numériques respectant un certain nombre d'équilibres. La première partie du travail se concentre sur la propagation des ondes externes et internes de gravité. Nous nous intéresserons en premier lieu à la stabilité de la séparation en mode rapide (barotrope) et lents (baroclines) et montrons qu'elle peut être ameliorée en levant certaines hypothèses traditionnellement effectuées. Dans un second temps, nous étudions l'impact de la discrétisation (ordre des schémas, grilles décalées ou non) sur la propagation des ondes internes de gravité provenant du couplage vitesse pression. Une décomposition en modes verticaux nous permet également de proposer un schéma espace temps très efficace. La seconde partie étudie en détail les schémas d'advection de quantité de mouvement et de traceurs, tout particulièrement dans l'objectif d'une réduction de la diffusion diapycnale (diffusion dans les directions orthogonales aux couches de densité constante). Ce travail nous amène tout d'abord à porter notre attention sur les schémas d'advection verticaux souvent négligés au regard de la dimension horizontale. Les bonnes propriétés d'un schéma compact (et de ses variantes espace temps et monotones) sont mises en avant. Enfin nous analysons le comportement multidimensionnel de ces schémas d'advection. / Three-dimensional regional ocean numerical models are based on solving the primitive equations and mostly use Eulerian finite differences methods of resolution on staggered grids. These models must accurately represent transports and energy transfers. Improving these numerical models therefore requires (i) the identification of predominant process, particularly in terms of dissipation in these transfers and (ii) the construction of numerical methods respecting a number of balances. The first part of the work focuses on the propagation of external and internal gravity waves. We focus primarily on the stability of the separation in fast mode (barotropic) and slow (baroclinic) and show that it can be improved by removing certain assumptions traditionally made. In a second step, we study the impact of the discretization (order of schemes, staggered grids or not) on the propagation of internal gravity waves coming from the coupling velocity pressure. A decomposition into vertical modes also allows us to offer a highly effective space-time scheme. The second part examines in detail the numerical advection schemes of momentum and tracers, especially with the aim of reducing the diapycnal diffusion (diffusion in the orthogonal direction of constant density layers). This work leads us first to focus our attention on the vertical advection schemes often overlooked in front of the horizontal dimension. The good properties of a compact schema (and its space-time and monotonous variants ) are highlighted. Finally we analyze the multidimensional behavior of these advection schemes.
Identifer | oai:union.ndltd.org:theses.fr/2014GRENM096 |
Date | 21 October 2014 |
Creators | Demange, Jérémie |
Contributors | Grenoble, Blayo, Éric, Debreu, Laurent, Marchesiello, Patrick |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0025 seconds