A system was developed to perform real-time biological threat agent (BTA) detection with a small autonomous unmanned aerial vehicle (UAV). Biological sensors just recently reached a level of miniaturization and sensitivity that made UAV integration a feasible task. A Surface Plasmon Resonance (SPR) biosensor was integrated for the first time into a small UAV platform, allowing the UAV platform to collect and then quantify the concentration of an aerosolized biological agent in real-time. A sensor operator ran the SPR unit through a groundstation laptop and was able to wirelessly view detection results in real time. An aerial sampling mechanism was also developed for use with the SPR sensor. The collection system utilized a custom impinger setup to collect and concentrate aerosolized particles. The particles were then relocated and pressurized for use with the SPR sensor. The sampling system was tested by flying the UAV through a ground based plume of water soluble dye. During a second flight test utilizing the onboard SPR sensor, a sucrose solution was autonomously aerosolized, collected, and then detected by the combined sampling and SPR sensor subsystems, validating the system\'s functionality. The real-time BTA detection system has paved the way for future work quantifying biological agents in the atmosphere and performing source localization procedures. / Master of Science
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/23241 |
Date | 17 June 2013 |
Creators | Palframan, Mark C. |
Contributors | Aerospace and Ocean Engineering, Woolsey, Craig A., Schmale, David G. III, Patil, Mayuresh J. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Language | English |
Detected Language | English |
Type | Thesis |
Format | ETD, application/pdf, application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Page generated in 0.0014 seconds