The unsteady aerodynamic and aeroelastic analysis of flapping flight under various kinematics and flow parameters is presented in this dissertation. The main motivation for this study arises from the challenges facing the development of micro air vehicles. Micro air vehicles by requirement are compact with dimensions less than 15-20 cm and flight speeds of around 10-15 m/s. These vehicles operate in low Reynolds number range of 10,000 to 100,000. At these low Reynolds numbers, the aerodynamic efficiency of conventional fixed airfoils significantly deteriorates. On the other hand, flapping flight employed by birds and insects whose flight regime coincides with that of micro air vehicles offers a viable alternate solution.
For the analysis of flapping flight, a boundary fitted moving grid algorithm is implemented in a flow solver, GenIDLEST. The dynamic movement of the grid is achieved using a combination of spring analogy and trans-finite interpolation on displacements. The additional conservation equation of space required for moving grid is satisfied. The solver is validated with well known flow problems such as forced oscillation of a cylinder, a heaving airfoil, a moving indentation channel, and a hovering fruitfly.
The performance of flapping flight is analyzed using Large Eddy Simulation (LES) for a wide range of Reynolds numbers and under various kinematic parameters. A spiral Leading Edge Vortex (LEV) forms during the downstroke due to the high angle of attack, which results in high force production. A strong spanwise flow of the order of the flapping velocity is observed along the core of the LEV. In addition, the formation of a negative spanwise flow is observed due to the tip vortex, which slows down the removal of vorticity from the LEV. This leads to the instability of the LEV at around mid-downstroke. Analysis with different rotation kinematics shows that a continuous rotation results in better propulsive efficiency as it generates thrust during the entire flapping cycle. Analysis with different angles of attack shows that a moderate angle of attack which results in complete shedding of the LEV offers high propulsive efficiency. The analysis of flapping flight at Reynolds numbers ranging from 100 to 100,000 shows that higher lift and thrust values are obtained for Re?100. The critical reasons are that at higher Reynolds numbers, the LEV is closer to the surface and as it sheds and convects it covers most of the upper surface. However, the Reynolds number has no or little effect on the lift and thrust as identical values are obtained for Re=10,000 and 100,000. The analysis with different tip shapes shows that tip shapes do not have a significant effect on the performance. Introduction of stroke deviation to kinematics leads to drop in average lift as wing interacts with the LEV shed during the downstroke.
A linear elastic membrane model with applied aerodynamic load is developed for aeroelastic analysis. Analysis with different wing stiffnesses shows that the membrane wing outperforms the rigid wing in terms of lift, thrust and propulsive efficiency. The main reason for the increase in force production is attributed to the gliding of the LEV along the camber, which results in a high pressure difference across the surface. In addition, a high stiffness along the spanwise direction and low stiffness along the chordwise direction results in a uniform camber and high lift and thrust production. / Ph. D.
Identifer | oai:union.ndltd.org:VTETD/oai:vtechworks.lib.vt.edu:10919/30151 |
Date | 22 January 2009 |
Creators | Gopalalkrishnan, Pradeep |
Contributors | Mechanical Engineering, Tafti, Danesh K., Ball, Kenneth S., Paul, Mark R., Sandu, Adrian, Walters, Robert W. |
Publisher | Virginia Tech |
Source Sets | Virginia Tech Theses and Dissertation |
Detected Language | English |
Type | Dissertation |
Format | application/pdf |
Rights | In Copyright, http://rightsstatements.org/vocab/InC/1.0/ |
Relation | Thesis.pdf |
Page generated in 0.0024 seconds