Return to search

Parametric Study on the Aeroelastic Stability of Rotor Seals

Labyrinth seals are widely used in rotating machinery and have been shown to experience aeroelastic instabilities. The rapid development of computational fluid dynamics now provides a high fidelity approach for predicting the aeroelastic behavior of labyrinth seals in three dimension and exhibits great potential within industrial application, especially during the detailed design stages. In the current publication a time-marching unsteady Reynolds- averaged Navier-Stokes solver was employed to study the various historically identified parameters that have essential influence on the stability of labyrinth seals. Advances in understanding of the related aeroelastic (flutter) phenomenon were achieved based on extensive yet economical numerical analysis of a simplified seal model. Further, application of the same methodology to several realistic gas turbine labyrinth seal designs confirmed the perceived knowledge and received agreements from experimental indications. Abbott’s criteria in describing the labyrinth seal aeroelastic behaviors were reaffirmed and further developed.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-116689
Date January 2012
CreatorsZhuang, Qingyuan
PublisherKTH, Kraft- och värmeteknologi
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0039 seconds