Return to search

Axiomatic systemic risk measures forecasting

Neste trabalho, aprofundamos o estudo sobre risco sistêmico via funções de agregação. Consideramos três carteiras diferentes como proxy para um sistema econômico, estas carteiras são consistidas por duas funções de agregação, baseadas em todos as ações do E.U.A, e um índice de mercado. As medidas de risco aplicadas são Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at Risk (EVaR), elas são previstas através do modelo GARCH clássico unido com nove funções de distribuição de probabilidade diferentes e mais por um método não paramétrico. As previsões são avaliadas por funções de perda e backtests de violação. Os resultados indicam que nossa abordagem pode gerar uma função de agregação adequada para processar o risco de um sistema previamente selecionado. / In this work, we deepen the study of systemic risk measurement via aggregation functions. We consider three different portfolios as a proxy for an economic system, these portfolios are consisted in two aggregation functions, based on all U.S. stocks and a market index. The risk measures applied are Value at Risk (VaR), Expected Shortfall (ES) and Expectile Value at Risk (EVaR), they are forecasted via the classical GARCH model along with nine distribution probability functions and also by a nonparametric approach. The forecasts are evaluated by loss functions and violation backtests. Results indicate that our approach can generate an adequate aggregation function to process the risk of a system previously selected.

Identiferoai:union.ndltd.org:IBICT/oai:lume.ufrgs.br:10183/178875
Date January 2018
CreatorsMosmann, Gabriela
ContributorsRighi, Marcelo Brutti
Source SetsIBICT Brazilian ETDs
LanguageEnglish
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFRGS, instname:Universidade Federal do Rio Grande do Sul, instacron:UFRGS
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0021 seconds