Return to search

Métodos Bayesianos aplicados em taxonomia molecular / Bayesian methods applied in molecular taxonomy

Neste trabalho são apresentados dois métodos de agrupamento de dados visados para aplicações em taxonomia molecular. Estes métodos estão baseados em modelos probabilísticos, o que permite superar alguns problemas apresentados nos métodos não probabilísticos existentes, como a dificuldade na escolha da métrica de distância e a falta de tratamento e aproveitamento do conhecimento a priori disponível. Os métodos apresentados combinam por meio do teorema de Bayes a informação extraída dos dados com o conhecimento a priori que se dispõe, razão pela qual são denominados métodos Bayesianos. O primeiro método, método de agrupamento hierárquico Bayesiano, está baseado no algoritmo HBC (Hierarchical Bayesian Clustering). Este método constrói uma hierarquia de partições (dendrograma) baseado no critério da máxima probabilidade a posteriori de cada partição. O segundo método é baseado em um tipo de modelo gráfico probabilístico conhecido como redes Gaussianas condicionais, o qual foi adaptado para problemas de agrupamento. Ambos métodos foram avaliados em três bancos de dados donde se conhece a rótulo da classe. Os métodos foram usados também em um problema de aplicação real: a taxonomia de uma coleção brasileira de estirpes de bactérias do gênero Bradyrhizobium (conhecidas por sua capacidade de fixar o \'N IND.2\' do ar no solo). Este banco de dados é composto por dados genotípicos resultantes da análise do RNA ribossômico. Os resultados mostraram que o método hierárquico Bayesiano gera dendrogramas de boa qualidade, em alguns casos superior que o melhor dos algoritmos hierárquicos analisados. O método baseado em redes gaussianas condicionais também apresentou resultados aceitáveis, mostrando um adequado aproveitamento do conhecimento a priori sobre as classes tanto na determinação do número ótimo de grupos, quanto no melhoramento da qualidade dos agrupamentos. / In this work are presented two clustering methods thought to be applied in molecular taxonomy. These methods are based in probabilistic models which overcome some problems observed in traditional clustering methods such as the difficulty to know which distance metric must be used or the lack of treatment of available prior information. The proposed methods use the Bayes theorem to combine the information of the data with the available prior information, reason why they are called Bayesian methods. The first method implemented in this work was the hierarchical Bayesian clustering, which is an agglomerative hierarchical method that constructs a hierarchy of partitions (dendogram) guided by the criterion of maximum Bayesian posterior probability of the partition. The second method is based in a type of probabilistic graphical model knows as conditional Gaussian network, which was adapted for data clustering. Both methods were validated in 3 datasets where the labels are known. The methods were used too in a real problem: the clustering of a brazilian collection of bacterial strains belonging to the genus Bradyrhizobium, known by their capacity to transform the nitrogen (\'N IND.2\') of the atmosphere into nitrogen compounds useful for the host plants. This dataset is formed by genetic data resulting of the analysis of the ribosomal RNA. The results shown that the hierarchical Bayesian clustering method built dendrograms with good quality, in some cases, better than the other hierarchical methods. In the method based in conditional Gaussian network was observed acceptable results, showing an adequate utilization of the prior information (about the clusters) to determine the optimal number of clusters and to improve the quality of the groups.

Identiferoai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-03102007-105125
Date31 August 2007
CreatorsEdwin Rafael Villanueva Talavera
ContributorsCarlos Dias Maciel, Estevam Rafael Hruschka Junior, Vilma Alves de Oliveira
PublisherUniversidade de São Paulo, Engenharia Elétrica, USP, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Sourcereponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0029 seconds