Return to search

Probabilidade e probabilidade geomÃtrica: alÃm dos dados, moedas e cartas de baralho / Probability and geometric probability: in addition to data, coins and playing cards

CoordenaÃÃo de AperfeÃoamento de Pessoal de NÃvel Superior / O presente trabalho consiste numa abordagem didÃtico-pedagÃgica do estudo e do ensino da Teoria das Probabilidades na EducaÃÃo BÃsica, com Ãnfase no conceito de Probabilidade GeomÃtrica, sua importÃncia e relevÃncia para uma aprendizagem mais significativa, efetiva e atrativa. Inicia-se com a histÃria e evoluÃÃo deste singular ramo da MatemÃtica Aplicada, seguindo-se uma seÃÃo com teoria e prÃtica atravÃs da resoluÃÃo de exercÃcios. O conceito de probabilidade geomÃtrica à introduzido e desenvolvido a fim de mostrar quÃo mais abrangente pode ser a Teoria das Probabilidades (como apresentada nos livros didÃticos no Brasil), tanto em termos de conteÃdo quanto de aplicaÃÃes e relaÃÃes com outras Ãreas da prÃpria MatemÃtica. Algumas aplicaÃÃes interessantes e conhecidas na literatura sÃo apresentadas, resolvidas e analisadas de modo simples, algumas vezes fazendo uso de matemÃtica menos elementar, outras explorando apenas os aspectos intuitivos. Nesta seÃÃo voltada para as aplicaÃÃes do conceito de probabilidade geomÃtrica, trata-se da soluÃÃo de problemas como o Problema das Agulhas de Buffon, o Problema do MacarrÃo e o Problema do Encontro, dentre outros, encerrando com o problema do Paradoxo de Bertrand. Seguem-se as consideraÃÃes finais do autor e um apÃndice com algumas demonstraÃÃes de resultados de geometria plana que sÃo utilizados ao longo do texto. / This work is a didactic-pedagogical approach to the study and teaching of Probability Theory in Basic Education, with emphasis on the concept of Geometric Probability, its importance and relevance to a more meaningful, effective and attractive learning. It begins with the history and evolution of this unique branch of Applied Mathematics, followed by a section with theory and practice by means of problem solving. The concept of geometric probability is introduced and developed in order to show how broad the theory of probability can be (as presented in textbooks in Brazil), both in terms of content, as well as applications and relations with other areas of mathematics itself. Some interesting and well-know applications in the literature are presented, analyzed and solved in a simple fashion, sometimes by making use of less elementary mathematics, others times by exploring only intuitive aspects. In this section, focused on the application of the concept of geometric probability, we deal with the solving of problems, such as the Problem of Buffonâs Needles, the Pasta Problem and the Problem of the Encounter, among others, closing with the problem of Bertrandâs Paradox. On the sequence the author offers his final remarks and appendix with some demonstrations of results in plane geometry that are used throughout the text.

Identiferoai:union.ndltd.org:IBICT/oai:www.teses.ufc.br:10351
Date21 September 2015
CreatorsJosà Luciano Nascimento Bezerra
ContributorsFabricio Siqueira Benevides, JÃlio CÃsar Silva AraÃjo, Angelo Papa Neto
PublisherUniversidade Federal do CearÃ, Programa de PÃs-GraduaÃÃo em MatemÃtica em Rede Nacional (PROFMAT), UFC, BR
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguageEnglish
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Formatapplication/pdf
Sourcereponame:Biblioteca Digital de Teses e Dissertações da UFC, instname:Universidade Federal do Ceará, instacron:UFC
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.0024 seconds