Formaldehyde is one of the most prevalent and toxic chemicals found indoors, where we spend ~90% of our lives. Chronic exposure to formaldehyde indoors, therefore, is of particular concern, especially for sensitive populations like children and infants. Unfortunately, no effective filtration control strategy exists for its removal. While research has shown that proteins in sheep's wool bind permanently to formaldehyde, the extent of wool's formaldehyde removal efficiency and effective removal capacity when applied in active filtration settings is unknown. In this research, wool capacity experiments were designed using a plug flow reactor and air cleaner unit to explore the capacity of wool to remove formaldehyde given different active filtration designs. Using the measured wool capacity, filter life and annual costs were modeled in a typical 50 m₃ room for a variety of theoretical filter operation lengths, air exchange rates, and source concentrations. For each case, annual filtration costs were compared to the monetary benefits derived from wool resale and from the reduction in cancer rates for different population types using the DALYs human exposure metric. Wool filtration was observed to drop formaldehyde concentrations between 60-80%, although the effective wool removal capacity was highly dependent on the fluid mechanics of the filtration unit. The air cleaner setup yielded approximately six times greater capacity than the small-scale PFR designed to mimic active filtration (670 [mu]g versus 110 [mu]g HCHO removed per g of wool, respectively). The outcomes of these experiments suggest that kinematic variations resulting from different wool packing densities, air flow rates, and degree of mixing in the units influence the filtration efficiency and effective capacity of wool. The results of the cost--benefit analysis show that for the higher wool capacity conditions, cost-effectiveness is achieved by the majority of room cases when sensitive populations like children and infants are present. However, for the average population scenarios, filtration was rarely worthwhile, showing that adults benefit less from reductions in chronic formaldehyde exposure. These results suggest that implementation of active filtration would be the most beneficial and cost-effective in settings like schools, nurseries, and hospitals that have a high percentage of sensitive populations. / text
Identifer | oai:union.ndltd.org:UTEXAS/oai:repositories.lib.utexas.edu:2152/25838 |
Date | 11 September 2014 |
Creators | Wang, Jennifer, active 21st century |
Source Sets | University of Texas |
Language | English |
Detected Language | English |
Type | Thesis |
Format | application/pdf |
Page generated in 0.0016 seconds