• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 32
  • 20
  • 6
  • 5
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 161
  • 161
  • 161
  • 47
  • 35
  • 32
  • 32
  • 29
  • 27
  • 25
  • 24
  • 24
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrating occupational indoor air quality with building information modeling (BIM)

Altaf, Mohammed Sadiq Unknown Date
No description available.
2

A critical appraisal of the use of displacement ventilation in commercial buildings

Geens, Andrew John January 2000 (has links)
No description available.
3

A RULE BASED EXPERT SYSTEM FOR IAQ

CHEN, MINGQING 13 July 2005 (has links)
No description available.
4

Monitoring and modeling of diurnal and seasonal odour and gas emissions from different types of swine rooms

Wang, Yuanyuan 04 January 2008
The issue of odour, greenhouse gas emissions and indoor air quality in swine buildings have become a great concern for the neighbouring communities as well as governments. Air dispersion models have been adopted widely as an approach to address these problems which determine science-based distance between livestock production site and neighbours. However, no existing model considers the diurnal and seasonal variations of odour, gas (ammonia, hydrogen sulphide, greenhouse gas), and dust concentrations and emissions, which may cause great uncertainty. The primary objective of this project is to monitor and model the diurnal and seasonal variations of odour, gases, and dust concentrations and emissions from nursery, farrowing, and gestation rooms. Additionally, this study tried to quantify the greenhouse gas contribution from swine buildings and evaluate the indoor air quality of swine barns. <p>Strip-block experimental design was used to measure the diurnal variation of odour and gas concentrations and emissions in PSC Elstow Research Farm. It was found that: 1) odour and gas concentrations in winter were significantly higher than those in mild and warm weather conditions for all three rooms (P<0.05); 2) the nursery room had higher level of odour and gas concentration and emission than the other two types of rooms, no significant difference existed between the farrowing and gestation rooms (P>0.05); 3) significant diurnal variations occurred in August and April (P<0.05) for odour and some gas concentrations and emissions, while no significant diurnally variations were found in February (P>0.05); 4) apparent diurnal variation patterns were observed in August and April for NH3, H2S and CO2 concentrations, being high in the early morning and low in the late afternoon; 5) positive correlation was found between odour concentrations and NH3, H2S, and CO2 concentrations, respectively. <p>A whole year ( August 2006 to July 2007) monitoring of odour, gas and dust concentrations and emissions revealed that: 1) significant seasonal effect on odour and gas concentrations and emissions, total dust concentrations and dust depositions were observed (P<0.05), but no specific variation pattern was discovered for odour and gas emissions; 2) the total greenhouse gas emission from all the rooms in the gestation, nursery and farrowing area was 2956 CO2 equivalent tons per year, where gestation area, nursery area, and farrowing area accounted for 39.3 %, 37.2% and 23.5%, respectively; the CO2 emission contributed 53.4% to the total greenhouse emission, and CH4 contributed to 43.9%, 2.7% for N2O; N2O could be considered negligible; 3) indoor air quality of the swine barn met the requirements set by the Occupational Health and Safety Regulations (1996) of Saskatchewan for NH3, H2S, and CO2. <p>Statistical models were developed for each type of room to predict the odour and gas concentrations and emissions based on four variables: ventilation rate, room temperature, ambient temperature, and animal unit. The predicted results showed agreeable with measured values for most models (R2 = 0.56-0.96). Generally, gas prediction models performed better (R2=0.61-0.96) than odour prediction models (R2=0.56-0.85).<p>This study was conducted in the province of Saskatchewan throughout one year and the results could be used as representative data for Canada Prairies. Due to the large diurnal and seasonal variabilities of odour emissions, it was recommended to take multiple measurements of odour emission rate under different weather conditions in order to improve the accuracy of air dispersion modeling.
5

Monitoring and modeling of diurnal and seasonal odour and gas emissions from different types of swine rooms

Wang, Yuanyuan 04 January 2008 (has links)
The issue of odour, greenhouse gas emissions and indoor air quality in swine buildings have become a great concern for the neighbouring communities as well as governments. Air dispersion models have been adopted widely as an approach to address these problems which determine science-based distance between livestock production site and neighbours. However, no existing model considers the diurnal and seasonal variations of odour, gas (ammonia, hydrogen sulphide, greenhouse gas), and dust concentrations and emissions, which may cause great uncertainty. The primary objective of this project is to monitor and model the diurnal and seasonal variations of odour, gases, and dust concentrations and emissions from nursery, farrowing, and gestation rooms. Additionally, this study tried to quantify the greenhouse gas contribution from swine buildings and evaluate the indoor air quality of swine barns. <p>Strip-block experimental design was used to measure the diurnal variation of odour and gas concentrations and emissions in PSC Elstow Research Farm. It was found that: 1) odour and gas concentrations in winter were significantly higher than those in mild and warm weather conditions for all three rooms (P<0.05); 2) the nursery room had higher level of odour and gas concentration and emission than the other two types of rooms, no significant difference existed between the farrowing and gestation rooms (P>0.05); 3) significant diurnal variations occurred in August and April (P<0.05) for odour and some gas concentrations and emissions, while no significant diurnally variations were found in February (P>0.05); 4) apparent diurnal variation patterns were observed in August and April for NH3, H2S and CO2 concentrations, being high in the early morning and low in the late afternoon; 5) positive correlation was found between odour concentrations and NH3, H2S, and CO2 concentrations, respectively. <p>A whole year ( August 2006 to July 2007) monitoring of odour, gas and dust concentrations and emissions revealed that: 1) significant seasonal effect on odour and gas concentrations and emissions, total dust concentrations and dust depositions were observed (P<0.05), but no specific variation pattern was discovered for odour and gas emissions; 2) the total greenhouse gas emission from all the rooms in the gestation, nursery and farrowing area was 2956 CO2 equivalent tons per year, where gestation area, nursery area, and farrowing area accounted for 39.3 %, 37.2% and 23.5%, respectively; the CO2 emission contributed 53.4% to the total greenhouse emission, and CH4 contributed to 43.9%, 2.7% for N2O; N2O could be considered negligible; 3) indoor air quality of the swine barn met the requirements set by the Occupational Health and Safety Regulations (1996) of Saskatchewan for NH3, H2S, and CO2. <p>Statistical models were developed for each type of room to predict the odour and gas concentrations and emissions based on four variables: ventilation rate, room temperature, ambient temperature, and animal unit. The predicted results showed agreeable with measured values for most models (R2 = 0.56-0.96). Generally, gas prediction models performed better (R2=0.61-0.96) than odour prediction models (R2=0.56-0.85).<p>This study was conducted in the province of Saskatchewan throughout one year and the results could be used as representative data for Canada Prairies. Due to the large diurnal and seasonal variabilities of odour emissions, it was recommended to take multiple measurements of odour emission rate under different weather conditions in order to improve the accuracy of air dispersion modeling.
6

Advancements in concrete material sustainability : supplementary cementitious material development and pollutant interaction

Taylor Lange, Sarah Clare 16 September 2013 (has links)
Calcined clay and fly ash supplementary cementitious materials (SCMs) used in cement based materials were examined for their chemical and mechanical performance, as well as their pollutant interaction. This dissertation addresses three primary research questions, namely: (i) can zincite additions facilitate the use of calcined clay as SCMs by compensating for reductions in early-age mechanical performance or by compensating for their reduced pozzolanic reactivity, (ii) can cement renders, containing metakaolin calcined clays, be engineered for passive carbon dioxide and ozone removal, and (iii) how do the specific activity and emanation fractions of concrete constituents, including fly ash and metakaolin, as well as assembled concretes impact concrete radon emanation and indoor radon concentrations? The first question relates directly to the development of new, sustainable material options, which can replace a portion of cement in a concrete mixture. Results from the experiments with zincite showed that the treatment method removed the dilution effect that occurs when using less reactive materials to substitute a portion of portland cement, but did not considerably influence mechanical properties. Therefore, zincite additions are not a good means of enhancing the utilization of non-kaolinite clays in concrete. As an integrated system, the latter two questions of this dissertation investigate the interaction between airborne pollutants and the cement based materials containing SCMs. The use of SCMs in render and concrete systems resulted in different pollutant uptake and exhalation behavior, relative to non-SCM control systems. For pollutant uptake, render systems containing metakaolin increased the carbon dioxide ingress while decreasing the ozone uptake. For radon exhalation rates, modeling results demonstrated that concretes without fly ash have a higher probability of containing less total radium and lower radon exhalation rates, when compared to samples with fly ash, assuming an emanation fraction of 5%, as suggested in the literature. Experimental results demonstrated that metakaolin, fly ash and control concretes had emanation fractions of 7%, 9% and 13%, respectively, confirming that (i) an assumed fraction of 5% would underpredict indoor radon concentrations and potential health consequences, and (ii) SCMs can reduce the total concrete emanation fraction. This dissertation demonstrates how the use of sustainable material selections, such as calcined clays and fly ashes, not only influences the microstructure and mechanical performance of the cement based materials, but also alters the interaction of the material with its surrounding environment. / text
7

Pollutant control strategies for acceptable indoor air quality and energy efficiency in retail buildings

Zaatari, Marwa 24 February 2014 (has links)
Indoor air is associated with substantial health risks and is estimated to be responsible for the loss of over 4.7 million healthy life years (years lost due to morbidity and mortality) annually in the U.S. The highest indoor air-related health benefits can be expected from policies and strategies that efficiently target pollutants having the greatest contribution to the burden of disease. This burden is caused by indoor sources as well as by outdoor pollutants transported to the indoors. The diversity of pollutants, pollutant sources, and the resulting health effects challenge the comparison of the impacts of different control strategies on energy consumption and indoor air quality. To address this challenge, this work presents a quantitative framework for reaching the optimal energy cost for the maximum achieved exposure benefits, specifically for retail buildings and their understudied energy, economic, and health risk influence. The main objectives of this dissertation are to 1) determine pollutants of concern in retail buildings that contribute the greatest to the burden of disease, and 2) determine energy-efficient, exposure-based control strategies for different retail types and locations. The research in this dissertation is divided into four specific aims that fulfill these two objectives. The first specific aim (Specific aim 1.a) addresses Objective 1 by applying available disease impact models on pollutant concentrations taken from 15 literature studies (150 stores, a total of 34 pollutants). Of those pollutants, there was little data reported on particulate matter (PM) concentrations and none on emission rates for PM, limiting our understanding of exposure to this pollutant. The second specific aim (Specific aim 1.b) also addresses Objective 1 by characterizing particulate matter (PM) concentrations, emission rates, and fate of ambient and indoor-generated particles in retail buildings. The tasks of this specific aim consisted of particulate matter and ventilation measurements in 14 retail buildings. Among the findings of Objective 1, PM2.5 and acrolein are the main contaminants of concern for which control methods should be prioritized, contributing to 160 disability-adjusted life years (DALYs; years lost due to premature mortality and disability) per 100,000 persons annually. Employees in grocery stores mainly drove this burden. An efficient indoor exposure reduction strategy should take into account all mechanisms that influence pollutant concentrations: indoor and outdoor sources (highlighting the importance of retail type and location), infiltration, ventilation, and filtration. The remaining specific aims address Objective 2 by investigating the energy and air quality impact of two commonly used exposure control scenarios, ventilation (Specific aim 2.a) and filtration (Specific aim 2.b). The tasks of Specific aim 2.a consisted of modeling the impact of multiple ventilation strategies on contaminants of concern for six major U.S. cities and two retail types. The tasks for Specific aim 2.b consisted of conducting field measurements on 15 rooftop units to determine the fan energy impacts of filter pressure drop. These results are used in combination with a large dataset of 75 filters commonly installed in commercial buildings to estimate the energy consequences of filtration. Results for Objective 2 are presented from the quantitative comparison of the impact on energy usage and DALYs lost of three main approaches: (1) adjusting ventilation only; (2) adjusting filtration only; and (3) adjusting ventilation and filtration together. All approaches were able to provide substantial reductions in the health risks (19-26% decrease in DALYs lost); the magnitude of the reductions depended on the ventilation/filtration scenario, the retail type, and the city. The magnitude of energy cost to achieve the maximum health benefits depended on the city and the retail type (for example for a 10,000 m2 grocery store, the energy cost ranged from $1,100 for the annual cost of filtration energy in Los Angeles to $24,000 for the annual cost of ventilation in Austin). The uncertainties of the estimates driving these findings are discussed throughout the results section. The finding that emerges from this analysis is the pollutant exposure control ventilation (PECV) strategy. This strategy is superior to the ventilation rate procedure (VRP; ASHRAE Standard 62.1-2010) and the indoor air quality procedure (IAQP; ASHRAE Standard 62.1-2010) as it decides on a range of ventilation rates by weighing the exposures of contaminants of concern found in retail buildings. Then, among the range of ventilation rates identified, the PECV recommends the optimal ventilation rate that leads to energy usage savings in the climate considered. Overall, the work presented here prioritizes specific contaminants of concern in retail buildings and proposes an exposure-based, energy-efficient control strategy for different retail types and locations. Policy makers, engineers, and building owners can use these results to decide amongst appropriate control strategies that will lead to minimum energy consumption and, at the same time, will not compromise occupant health. This work can be repeated for different types of buildings, notably for residences, schools, and offices where abundant information is available on both pollutant concentrations and ventilation rates, but where information is lacking on how to optimize the control strategies for better indoor air quality. / text
8

Assessing and controlling concentrations of volatile organic compounds in the retail environment

Nirlo, Éléna Laure 07 July 2014 (has links)
Retail buildings have potential for both short-term (customer) and long-term (occupational) exposure to indoor pollutants. A multitude of sources of volatile organic compounds (VOCs) are common to the retail environment. Volatile organic compounds can be odorous, irritating or carcinogenic. Through a field investigation and modeling study, this dissertation investigates exposure to, and control of, VOCs in retail buildings. Fourteen U.S. retail stores were tested one to four times each over a period of a year, for a total of twenty-four test visits. Over a hundred parameters were investigated to characterize each of the buildings, including ventilation system parameters, and airborne pollutants both indoors and outdoors. Concentrations of VOCs were simultaneously measured using five different methods: Summa canisters, sorbent tubes, 2,4-dinitrophenylhydrazine (DNPH) tubes, a photoionization detector (PID), and a colorimetric real-time formaldehyde monitor (FMM). The resulting dataset was analyzed to evaluate underlying trends in the concentrations and speciation of VOCs, identify influencing factors, and determine contaminants of concern. A parametric framework based on a time-averaged mass balance was then developed to compare strategies to reduce formaldehyde concentrations in retail stores. Mitigation of exposure to formaldehyde through air cleaning (filtration), emission control (humidity control), and targeted dilution (local ventilation) were assessed. Results of the field study suggested that formaldehyde was the most important contaminant of concern in the retail stores investigated, as all 14 stores exceeded the most conservative health guideline for formaldehyde (OEHHA TWA REL = 7.3 ppb) during at least one sampling event. Formaldehyde monitors were strongly correlated with DNPH tube results. The FMM showed promising characteristics, supporting further consideration as real-time indicators to control ventilation and/or environmental parameters. The vast majority of the remaining VOCs were present at low concentrations, but episodic activities such as cooking and cleaning led to relatively high indoor concentrations for ethanol, acetaldehyde, and terpenoids. Results of the modeling effort demonstrated that local ventilation caused the most uniform improvements to indoor formaldehyde concentrations across building characteristics, but humidity control appeared to have a very limited impact. Filtration used under specific conditions could lead to larger decreases in formaldehyde concentrations than all other strategies investigated, and was the least energy-intensive. / text
9

Energy Audit and Renovation Proposal for a joint Ventilation System of Five Commercial Premises

Li, Yufang January 2014 (has links)
Energy saving is a highly concerned topic in the developing countries. To achieve a desirable living and working condition for inhabitants while consuming minimum amount of energy, more and more efforts, new technologies are developed and invested in the different industries by countries. It has been discussed that energy use in the building sectors is intensive and has the largest share in the total energy supply. Therefore, a growing number of companies and institutions are either required or voluntary to take energy efficiency measures once a year or more to identify current energy use, as well as the opportunities for energy efficiency improvement. One of the energy efficiency measures is energy audit. This report is aiming at pinpointing the current energy consumption for a joint ventilation system used by five premises in downtown Gävle, Sweden. The building company is planning a renovation for the ventilation system, including a cut down of energy supply while improving thermal comfort by providing adequate ventilation. The main object area is a restaurant, which consumes most energy supply. During the measurements, three sets of equipment (TSI VelociCalc plus, SWEMA FLOW 230 and TSI-AccuBALANCE) were used to collect air flow and temperature data. The results indicate that the current energy use for the joint ventilation system during a year is around 50438 kWh, using recommended ventilation rates; while it can be reduced to 34737 kWh. For the restaurant, the required ventilation rate is 1204 l/s to provide fresh air constantly if it is over 150 people and give ventilation according the standard: 7 l/s p 0.35 l/s m2. The current ventilation rate is only 312 l/s, thus clearly failing to comply with the standard. One viable method for providing enough ventilation rate and at the same time without wasting energy is to install CO2 detector, which regulates the ventilation rate according to the level of CO2 concentration. The studied shops have instead very high ventilation rates in the current system; though this provides good air quality, the energy is wasted unnecessarily.
10

The air in there--should we care? : an investigation into the relationship between indoor air quality and tracheal mucus in thoroughbred racehorses

Millerick-May, Melissa. January 2008 (has links)
Thesis (Ph. D.)--Michigan State University. Comparative Medicine and Integrative Biology, 2008. / Title from PDF t.p. (Mar. 27, 2009). Includes bibliographical references. Also issued in print.

Page generated in 0.0889 seconds