Doctor of Philosophy (PhD) / It is well recognised that both genetic and environmental factors determine an individual’s predisposition to asthma. In recent years, the airway smooth muscle (ASM) cell has come to the attention of researchers to, not merely be a contractile cell of the airway, but one that orchestrates events affecting airway remodelling and proliferation. Experiments described in this thesis have, for the first time, examined genes that are associated with various aspects of the pathogenesis of asthma by using the candidate gene approach and a genome wide search. Genes have not only been identified to be differentially expressed in ASM cells derived from asthmatic and non-asthmatic participants, but have also been linked with a functional consequence of asthma. The three genes found to be differentially regulated between ASM cells derived from asthmatic and non-asthmatic participants were Peroxisome Proliferator-Activated Receptor- gamma (PPARγ), mimecan and fibulin-1. Expression of the anti-proliferative transcriptional factor PPARγ, found by the candidate gene approach, was elevated in ASM cells derived from asthmatic participants. Whilst elevated, the anti-proliferative effect of PPARγ was absent in ASM cells derived from asthmatic participants. By microarray analysis, mimecan, an anti-proliferative agent was identified. Mimecan levels, although not different basally in ASM cells, were upregulated by transforming growth factor β (TGFβ) only in asthmatic derived ASM cells. Silencing mimecan, by the use of specific oligonucleotides, increased proliferation of ASM cells. This suggested that by increasing mimecan expression, the proliferation of ASM cells may be halted. Fibulin-1, also found by microarray analysis and the final gene examined in this thesis, was found in elevated levels in BAL fluid, serum and ASM cells obtained from asthmatic participants. In addition, ASM cells derived from asthmatic participants, for the first time were shown to have faster wound healing rates compared with nonasthmatics. The elevated fibulin-1 levels in ASM cells derived from asthmatic participants, in the presence of TGFβ, were demonstrated to contribute to this increased wound healing. Specifically, fibulin-1 was found to affect wound healing by increasing proliferation rather than migration. The current available treatments for asthma, target the contractility and inflammatory conditions in the airway. Through this thesis, novel genes discovered to be associated with proliferation may be potential therapeutic targets to treat asthma. In particular, the fibulin-1 gene is outstandingly promising, as it was shown that silencing fibulin-1 resulted in slower wound healing rates through decreased cell proliferation, to possibly inhibit the airway remodelling observed in asthma, and furthermore, corticosteroid therapy was demonstrated not to affect to this gene.
Identifer | oai:union.ndltd.org:ADTP/234940 |
Date | January 2008 |
Creators | Lau, Justine Yeeman, jlau@med.usyd.edu.au |
Publisher | University of Sydney., Faculty of Medicine |
Source Sets | Australiasian Digital Theses Program |
Detected Language | English |
Rights | The author retains copyright of this thesis., http://www.library.usyd.edu.au/copyright.html |
Page generated in 0.0017 seconds